Acta Diabetologica

, Volume 53, Issue 4, pp 543–550 | Cite as

The 1-hour post-load glucose level is more effective than HbA1c for screening dysglycemia

  • Ram Jagannathan
  • Mary Ann Sevick
  • Dorothy Fink
  • Rachel Dankner
  • Angela Chetrit
  • Jesse Roth
  • Martin Buysschaert
  • Michael BergmanEmail author
Original Article



To assess the performance of HbA1c and the 1-h plasma glucose (PG ≥ 155 mg/dl; 8.6 mmol/l) in identifying dysglycemia based on the oral glucose tolerance test (OGTT) from a real-world clinical care setting.


This was a diagnostic test accuracy study. For this analysis, we tested the HbA1c diagnostic criteria advocated by the American Diabetes Association (ADA 5.7–6.4 %) and International Expert Committee (IEC 6.0–6.4 %) against conventional OGTT criteria. We also tested the utility of 1-h PG ≥ mg/dl; 8.6 mmol/l. Prediabetes was defined according to ADA-OGTT guidelines. Spearman correlation tests were used to determine the relationships between HbA1c, 1-h PG with fasting, 2-h PG and indices of insulin sensitivity and β-cell function. The levels of agreement between diagnostic methods were ascertained using Cohen’s kappa coefficient (Κ). Receiver operating characteristic (ROC) curve was used to analyze the performance of the HbA1c and 1-h PG test in identifying prediabetes considering OGTT as reference diagnostic criteria. The diagnostic properties of different HbA1c thresholds were contrasted by determining sensitivity, specificity and likelihood ratios (LR).


Of the 212 high-risk individuals, 70 (33 %) were identified with prediabetes, and 1-h PG showed a stronger association with 2-h PG, insulin sensitivity index, and β-cell function than HbA1c (P < 0.05). Furthermore, the level of agreement between 1-h PG ≥ 155 mg/dl (8.6 mmol/l) and the OGTT (Κ[95 % CI]: 0.40[0.28–0.53]) diagnostic test was stronger than that of ADA-HbA1c criteria 0.1[0.03–0.16] and IEC criteria (0.17[0.04–0.30]). The ROC (AUC[95 % CI]) for HbA1c and 1-h PG were 0.65[0.57–0.73] and 0.79[0.72–0.85], respectively. Importantly, 1-h PG ≥ 155 mg/dl (8.6 mmol/l) showed good sensitivity (74.3 % [62.4–84.0]) and specificity 69.7 % [61.5–77.1]) with a LR of 2.45. The ability of 1-h PG to discriminate prediabetes was better than that of HbA1c (∆AUC: −0.14; Z value: 2.5683; P = 0.01022).


In a real-world clinical practice setting, the 1-h PG ≥ 155 mg/dl (8.6 mmol/l) is superior for detecting high-risk individuals compared with HbA1c. Furthermore, HbA1c is a less precise correlate of insulin sensitivity and β-cell function than the 1-h PG and correlates poorly with the 2-h PG during the OGTT.


HbA1c OGTT Dysglycemia Prediabetes 1-hour post-load glucose Diabetes prevention 



This study was funded by CTSI Grant Number 1UL1RR029893 (NCRR, NIH, and the Schuman Foundation) and partly by NIH-K24-NR012226.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study was approved by the New York University School of Medicine Institutional Review Board.

Human and animal rights disclosure

All human rights were observed in keeping with Declaration of Helsinki 2008 (ICH GCP). There are no animal rights issues as this is a clinical study.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Gregg EW, Zhuo X, Cheng YJ, Albright AL, Narayan KMV, Thompson TJ (2014) Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: a modelling study. Lancet Diabetes Endocrinol 2(11):867–874. doi: 10.1016/S2213-8587(14)70161-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention (CDC) Awareness of prediabetes–United States, 2005–2010 (2013). MMWR Morbidity and mortality weekly report 62 (11):209–212Google Scholar
  3. 3.
    Barhak J, Isaman DJM, Ye W, Lee D (2010) Chronic disease modeling and simulation software. J Biomed Inform 43(5):791–799. doi: 10.1016/j.jbi.2010.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Herman WH, Ye W, Griffin SJ et al (2015) Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe). Diabetes Care: dc142459Google Scholar
  5. 5.
    Meier JJ, Bonadonna RC (2013) Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl 2):S113–S119. doi: 10.2337/dcS13-2008 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nichols GA, Alexander CM, Girman CJ, Kamal-Bahl SJ, Brown JB (2006) Treatment escalation and rise in HbA1c following successful initial metformin therapy. Diabetes Care 29(3):504–509CrossRefPubMedGoogle Scholar
  7. 7.
    Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK (1990) Cardiovascular risk factors in confirmed prediabetic individuals: Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 263(21):2893–2898CrossRefPubMedGoogle Scholar
  8. 8.
    Bergman M (2014) The early diabetes intervention program–Is early actually late? Diabetes/Metab Res Rev 30(8):654–658. doi: 10.1002/dmrr.2563 CrossRefGoogle Scholar
  9. 9.
    Nathan DM, Davidson MB, DeFronzo RA et al (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30(3):753–759. doi: 10.2337/dc07-9920 CrossRefPubMedGoogle Scholar
  10. 10.
    Gohdes D, Amundson H, Oser CS, Helgerson SD, Harwell TS (2009) How are we diagnosing cardiometabolic risk in primary care settings? Primary Care Diabetes 3(1):29–35. doi: 10.1016/j.pcd.2008.12.002 CrossRefPubMedGoogle Scholar
  11. 11.
    Committee IE (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32(7):1327–1334CrossRefGoogle Scholar
  12. 12.
    Association AD (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Supplement 1):S62–S69CrossRefGoogle Scholar
  13. 13.
    Rathmann W, Kowall B, Tamayo T et al (2012) Hemoglobin A1c and glucose criteria identify different subjects as having type 2 diabetes in middle-aged and older populations: the KORA S4/F4 Study. Ann Med 44(2):170–177. doi: 10.3109/07853890.2010.531759 CrossRefPubMedGoogle Scholar
  14. 14.
    Olson DE, Rhee MK, Herrick K, Ziemer DC, Twombly JG, Phillips LS (2010) Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 33(10):2184–2189. doi: 10.2337/dc10-0433 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cosson E, Chiheb S, Cussac-Pillegand C et al (2013) Haemoglobin glycation may partly explain the discordance between HbA1c measurement and oral glucose tolerance test to diagnose dysglycaemia in overweight/obese subjects. Diabetes Metab 39(2):118–125. doi: 10.1016/j.diabet.2012.08.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Marini MA, Succurro E, Frontoni S et al (2012) Insulin sensitivity, beta-cell function, and incretin effect in individuals with elevated 1-hour postload plasma glucose levels. Diabetes Care 35(4):868–872. doi: 10.2337/dc11-2181 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bonora E, Tuomilehto J (2011) The pros and cons of diagnosing diabetes with A1C. Diabetes Care 34(Suppl 2):S184–S190. doi: 10.2337/dc11-s216 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bergman M, Chetrit A, Roth J, Dankner R (2015) Dysglycemia and long-term mortality: observations from the Israel study of glucose intolerance, obesity and hypertension. Diabetes/Metab Res Rev 31(4):368–375. doi: 10.1002/dmrr.2618 CrossRefGoogle Scholar
  19. 19.
    Jagannathan R, Sevick MA, Li H et al (2015) Elevated 1-hour plasma glucose levels are associated with dysglycemia, impaired beta-cell function, and insulin sensitivity: a pilot study from a real world health care setting. Endocrine. doi: 10.1007/s12020-015-0746-z PubMedGoogle Scholar
  20. 20.
    Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L (2009) Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. Diabetes Care 32(2):281–286. doi: 10.2337/dc08-1264 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alyass A, Almgren P, Akerlund M et al (2015) Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts. Diabetologia 58(1):87–97. doi: 10.1007/s00125-014-3390-x CrossRefPubMedGoogle Scholar
  22. 22.
    Sesti G, Hribal ML, Fiorentino TV, Sciacqua A, Perticone F (2014) Elevated 1 h postload plasma glucose levels identify adults with normal glucose tolerance but increased risk of non-alcoholic fatty liver disease. BMJ Open Diabetes Res Care 2(1):e000016. doi: 10.1136/bmjdrc-2014-000016 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bardini G, Dicembrini I, Cresci B, Rotella CM (2010) Inflammation markers and metabolic characteristics of subjects with 1-h plasma glucose levels. Diabetes Care 33(2):411–413. doi: 10.2337/dc09-1342 CrossRefPubMedGoogle Scholar
  24. 24.
    Succurro E, Marini MA, Arturi F et al (2009) Elevated one-hour post-load plasma glucose levels identifies subjects with normal glucose tolerance but early carotid atherosclerosis. Atherosclerosis 207(1):245–249. doi: 10.1016/j.atherosclerosis.2009.04.006 CrossRefPubMedGoogle Scholar
  25. 25.
    Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M (2000) Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23(12):1830–1834CrossRefPubMedGoogle Scholar
  26. 26.
    Succurro E, Arturi F, Lugara M et al (2010) One-hour postload plasma glucose levels are associated with kidney dysfunction. Clin J Am Soc Nephrol CJASN 5(11):1922–1927. doi: 10.2215/CJN.03240410 CrossRefPubMedGoogle Scholar
  27. 27.
    Bianchi C, Miccoli R, Trombetta M et al (2013) Elevated 1-hour postload plasma glucose levels identify subjects with normal glucose tolerance but impaired beta-cell function, insulin resistance, and worse cardiovascular risk profile: the GENFIEV study. Journal Clin Endocrinol Metab 98(5):2100–2105. doi: 10.1210/jc.2012-3971 CrossRefGoogle Scholar
  28. 28.
    Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative: standards for reporting of diagnostic accuracy. Clin Chem 49(1):1–6CrossRefPubMedGoogle Scholar
  29. 29.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470CrossRefPubMedGoogle Scholar
  30. 30.
    Ram J, Snehalatha C, Selvam S et al (2015) The oral disposition index is a strong predictor of incident diabetes in Asian Indian prediabetic men. Acta Diabetol. doi: 10.1007/s00592-015-0718-z PubMedGoogle Scholar
  31. 31.
    Kanat M, Winnier D, Norton L et al (2011) The relationship between {beta}-cell function and glycated hemoglobin: results from the veterans administration genetic epidemiology study. Diabetes Care 34(4):1006–1010. doi: 10.2337/dc10-1352 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li C, Yang H, Tong G, et al (2014) Correlations between A1c, fasting glucose, 2 h postload glucose, and β-cell function in the Chinese population. Acta Diabetol 51(4):601–608CrossRefPubMedGoogle Scholar
  33. 33.
    Fiorentino TV, Marini MA, Andreozzi F et al (2015) One-hour postload hyperglycemia is a stronger predictor of type 2 diabetes than impaired fasting glucose. J Clin Endocrinol Metab 100(10):3744–3751CrossRefPubMedGoogle Scholar
  34. 34.
    Fizelova M, Stancakova A, Lorenzo C et al (2015) Glycated hemoglobin levels are mostly dependent on nonglycemic parameters in 9398 Finnish men without diabetes. J Clin Endocrinol Metab 100(5):1989–1996. doi: 10.1210/jc.2014-4121 CrossRefPubMedGoogle Scholar
  35. 35.
    Oka R, Aizawa T, Miyamoto S, Yoneda T, Yamagishi M (2015) One-hour plasma glucose as a predictor of the development of Type 2 diabetes in Japanese adults. Diabetic Med J Br Diabetic Assoc. doi: 10.1111/dme.12994 Google Scholar
  36. 36.
    Kahn R, Davidson MB (2014) The reality of type 2 diabetes prevention. Diabetes Care 37(4):943–949. doi: 10.2337/dc13-1954 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Christensen DL, Witte DR, Kaduka L et al (2010) Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care 33(3):580–582CrossRefPubMedGoogle Scholar
  38. 38.
    Silverman RA, Thakker U, Ellman T et al (2011) Hemoglobin A1c as a screen for previously undiagnosed prediabetes and diabetes in an acute-care setting. Diabetes Care 34(9):1908–1912. doi: 10.2337/dc10-0996 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mohan V, Vijayachandrika V, Gokulakrishnan K et al (2010) A1C cut points to define various glucose intolerance groups in Asian Indians. Diabetes Care 33(3):515–519. doi: 10.2337/dc09-1694 CrossRefPubMedGoogle Scholar
  40. 40.
    Manco M, Panunzi S, Macfarlane DP et al (2010) Relationship between Insulin S, Cardiovascular Risk C, One-hour plasma glucose identifies insulin resistance and beta-cell dysfunction in individuals with normal glucose tolerance: cross-sectional data from the Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC) study. Diabetes Care 33(9):2090–2097. doi: 10.2337/dc09-2261 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Priya M, Anjana RM, Chiwanga FS, Gokulakrishnan K, Deepa M, Mohan V (2013) 1-hour venous plasma glucose and incident prediabetes and diabetes in Asian indians. Diabetes Technol Ther 15(6):497–502. doi: 10.1089/dia.2013.0025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  • Ram Jagannathan
    • 1
  • Mary Ann Sevick
    • 1
  • Dorothy Fink
    • 2
  • Rachel Dankner
    • 3
    • 4
    • 5
  • Angela Chetrit
    • 3
  • Jesse Roth
    • 4
  • Martin Buysschaert
    • 6
  • Michael Bergman
    • 2
    Email author
  1. 1.NYU School of Medicine, Department of Population HealthCenter for Healthful Behavior ChangeNew YorkUSA
  2. 2.NYU School of Medicine, Department of Medicine, Division of Endocrinology and MetabolismNYU Langone Diabetes Prevention ProgramNew YorkUSA
  3. 3.Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy ResearchSheba Medical CenterTel HashomerIsrael
  4. 4.The Feinstein Institute for Medical ResearchNorth ShoreUSA
  5. 5.Sackler Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive MedicineTel Aviv UniversityTel AvivIsrael
  6. 6.Service d’Endocrinologie et Nutrition Cliniques Universitaires St-LucUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations