Skip to main content

G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis

Abstract

G protein-coupled receptors (GPCRs) play a pivotal role in cell signalling, controlling many processes such as immunity, growth, cellular differentiation, neurological pathways and hormone secretions. Fatty acid agonists are increasingly recognised as having a key role in the regulation of glucose homoeostasis via stimulation of islet and gastrointestinal GPCRs. Downstream cell signalling results in modulation of the biosynthesis, secretion, proliferation and anti-apoptotic pathways of islet and enteroendocrine cells. GPR40 and GPR120 are activated by long-chain fatty acids (>C12) with both receptors coupling to the Gαq subunit that activates the Ca2+-dependent pathway. GPR41 and GPR43 are stimulated by short-chain fatty acids (C2–C5), and activation results in binding to Gαi that inhibits the adenylyl cyclase pathway attenuating cAMP production. In addition, GPR43 also couples to the Gαq subunit augmenting intracellular Ca2+ and activating phospholipase C. GPR55 is specific for cannabinoid endogenous agonists (endocannabinoids) and non-cannabinoid fatty acids, which couples to Gα12/13 and Gαq proteins, leading to enhancing intracellular Ca2+, extracellular signal-regulated kinase 1/2 (ERK) phosphorylation and Rho kinase. GPR119 is activated by fatty acid ethanolamides and binds to Gαs utilising the adenylate cyclase pathway, which is dependent upon protein kinase A. Current research indicates that GPCR therapies may be approved for clinical use in the near future. This review focuses on the recent advances in preclinical diabetes research in the signalling and regulation of GPCRs on islet and enteroendocrine cells involved in glucose homoeostasis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhang Z, Wu J, Yu J, Xiao J (2012) A brief review on the evolution of GPCR: conservation and diversification. Open J Genet 2:11–17

    CAS  Article  Google Scholar 

  2. Insel PA, Tang CM, Hahntow I, Michel MC (2007) Impact of GPCRs in clinical medicine: genetic variants and drug targets. Biochim Biophys Acta 1768:994–1005

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Lin HH (2013) G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in chemistry. Biomed J 36:118–124

    PubMed  Article  Google Scholar 

  4. Davies MN, Secker A, Halling-Brown M et al (2008) GPCRTree: online hierarchical classification of GPCR function. BMC Res Notes 1:67

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Nordstorm KJV, Lagerstrom MC, Waller LMJ, Fredriksson R, Schioth HB (2009) The secretin GPCRs descended from the family of adhesion GPCRs. Mol Biol Evol 26:71–84

    Article  CAS  Google Scholar 

  6. Beinborn M (2006) Class B GPCRs: a hidden agonist within? Mol Pharmacol 70:1–4

    CAS  PubMed  Google Scholar 

  7. Mertens I, Vandingenen A, Johnson EC et al (2005) PDF receptor signalling in Drosophila contributes to both circadian and geotactic behaviours. Neuron 48:213–219

    CAS  PubMed  Article  Google Scholar 

  8. Chun L, Zhang WH, Liu JF (2012) Structure and ligand recognition of class C GPCRs. Acta Pharmacol Sin 33:312–323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:1010–1032

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Sarkar FH, Li Y, Wang Z, Kong D (2010) The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev 29:383–394

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Abdulkhalek S, Hrynyk M, Szewczuk MR (2013) A novel G-protein-coupled receptor-signaling platform and its targeted translation in human disease. Res Rep Biochem 3:17–30

    Google Scholar 

  12. Lattin J, Zidar DA, Schroder K, Kellie S, Hume DA, Sweet MJ (2007) G-protein-coupled receptor expression, function, and signalling in macrophages. J Leukoc Biol 82:16–32

    CAS  PubMed  Article  Google Scholar 

  13. Tilley DG (2011) G protein-dependent and G protein-independent signalling pathways and their impact on cardiac function. Cir Res 109:217–230

    CAS  Article  Google Scholar 

  14. Ahren B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    CAS  PubMed  Article  Google Scholar 

  15. Patel TB (2004) Single transmembrane spanning heterotrimeric G protein-coupled receptors and their signalling cascades. Pharmacol Rev 56:371–385

    CAS  PubMed  Article  Google Scholar 

  16. Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ (2013) An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 139:359–391

    CAS  PubMed  Article  Google Scholar 

  17. Vangaveti V, Shashidhar V, Jarrod G, Baune BT, Kennedy RL (2010) Free fatty acid receptors: emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab 1:165–175

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Moran BM, Abdel-Wahab YH, Vasu S, Flatt PR, McKillop AM (2015) GPR39 receptors and actions of trace metals on pancreatic beta cell function and glucose homoeostasis. Acta Diabetol (Epub ahead of print)

  19. Juan-Picó P, Fuentes E, Bermúdez-Silva FJ et al (2006) Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 39:155–162

    PubMed  Article  CAS  Google Scholar 

  20. Kang SU (2013) GPR119 agonists: a promising approach for T2DM treatment? A SWOT analysis of GPR119. Drug Discov Today 18:1309–1315

    CAS  PubMed  Article  Google Scholar 

  21. Tanaka T, Yano T, Adachi T, Koshimizu T, Hirasawa A, Tsujimoto G (2008) Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells. N-S Arch Pharmacol 377:515–522

    CAS  Article  Google Scholar 

  22. Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F (2009) Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52:289–298

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2008) Free fatty acids induce cholecystokinin secretion through GPR120. N-S Arch Pharmacol 377:523–527

    CAS  Article  Google Scholar 

  24. Holst JJ, Vilsbøll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136

    CAS  PubMed  Article  Google Scholar 

  25. Burant CF (2013) Activation of GPR40 a therapeutic target for the treatment of type 2 diabetes. Diabetes Care 36:175–179

    Article  CAS  Google Scholar 

  26. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59:251–262

    PubMed  Google Scholar 

  27. Watson S, Brown AJH, Holliday ND (2012) Differential signalling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81:631–642

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Brownlie R, Mayers RM, Pierce JA, Marley AE, Smith DM (2008) The long-chain fatty acid receptor, GPR40, and glucolipotoxicity: investigations using GPR40-knockout mice. Biochem Soc Trans 36:950–954

    CAS  PubMed  Article  Google Scholar 

  29. Stoddart LA, Smith NJ, Milligan G (2008) International Union of Pharmacology LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 60:405–417

    CAS  PubMed  Article  Google Scholar 

  30. Ferdaoussi M, Bergeron V, Kebede M, Mancini A, Alquier T, Poitout V (2012) Free fatty acid receptor 1: a new drug target for type 2 diabetes? Can J Diabetes 36:275–280

    Article  Google Scholar 

  31. Wang L, Zhao Y, Gui B et al (2011) Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet α-cells. J Endocrinol 210:173–179

    CAS  PubMed  Article  Google Scholar 

  32. Ferdaoussi M, Bergeron V, Zarrouki B et al (2012) G protein-coupled receptor (GPR) 40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 55:2682–2692

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Seljeset S, Siehler S (2012) Receptor-specific regulation of ERK1/2 activation by members of the “free fatty acid receptor” family. J Recept Signal Transduct Res 32:196–201

    CAS  PubMed  Article  Google Scholar 

  34. Nagasumi K, Esaki R, Iwachidow K et al (2009) Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 58:1067–1076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V (2008) The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57:2432–2437

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Itoh Y, Kawamata Y, Harada M et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 42:173–176

    Article  CAS  Google Scholar 

  37. Christiansen E, Watterson KR, Stocker CJ et al (2015) Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br J Nutr 113:1677–1688

    CAS  PubMed  Article  Google Scholar 

  38. Hauge M, Vestmar MA, Husted AS et al (2015) GPR40 (FFAR1)—combined Gs and Gq signalling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4:3–14

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Sunil V, Verma MK, Oommen AM et al (2014) CNX-011-67, a novel GPR40 agonist, enhances glucose responsiveness, insulin secretion and islet insulin content in n-STZ rats and in islets from type 2 diabetic patients. BMC Pharmacol Toxicol 25:15

    Google Scholar 

  40. Yonezawa T, Kurata R, Yoshida K, Murayama MA, Cui X, Hasegawa A (2013) Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Curr Med Chem 20:3855–3871

    CAS  PubMed  Article  Google Scholar 

  41. Burant CF, Viswanathan P, Marcinak J et al (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379:1403–1411

    CAS  PubMed  Article  Google Scholar 

  42. Kim MH, Seung KG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406

    CAS  PubMed  Article  Google Scholar 

  43. Ulven T (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front Endocinol 3:111

    Google Scholar 

  44. Kaji I, Karaki S, Kuwahara A (2014) Short-chain fatty acids receptor and its contribution to glucagon-like peptide-1 release. Digestion 89:31–36

    CAS  PubMed  Article  Google Scholar 

  45. Inoue D, Kimura I, Wakabayashi M et al (2012) Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett 586:1547–1554

    CAS  PubMed  Article  Google Scholar 

  46. Xiong Y, Miyamoto N, Shibata K et al (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Talukdar S, Olefsky J, Osborn O (2011) Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32:543–550

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    PubMed  Article  CAS  Google Scholar 

  49. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064

    CAS  PubMed  Google Scholar 

  50. Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    CAS  PubMed  Article  Google Scholar 

  51. Kimura I, Inoue D, Hirano K, Tsujimoto G (2014) The SCFA receptor GPR43 and energy metabolism. Front Endocrinol 5:85

    Google Scholar 

  52. Tolhurst G, Heffron H, Lam YS et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Kimura I, Ozawa K, Inoue D et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Bjursell M, Admyre T, Göransson M et al (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300:211–220

    Article  CAS  Google Scholar 

  55. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934

    CAS  PubMed  Article  Google Scholar 

  56. Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8:298–306

    Article  Google Scholar 

  57. Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Ryberg E, Larsson N, Sjögren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–10101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Simcocks AC, O’Keefe L, Jenkin KA, Mathai ML, Hryciw DH, McAinch AJ (2013) A potential role for GPR55 in the regulation of energy homeostasis. Drug Discov Today 24:1–7

    Google Scholar 

  60. Staton PC, Hatcher JP, Walker DJ et al (2008) The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 139:225–236

    CAS  PubMed  Article  Google Scholar 

  61. Whyte LS, Ryberg E, Sims NA et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106:16511–16516

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Romero-Zerbo SY, Rafacho A, Diaz-Arteaga A et al (2011) A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol 211:177–185

    CAS  PubMed  Article  Google Scholar 

  63. McKillop AM, Moran BM, Abdel-Wahab YHA, Flatt PR (2013) Evaluation of insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. Br J Pharmacol 170:978–990

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Ross RA (2008) The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 30:156–163

    Article  CAS  Google Scholar 

  65. Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA 110:5193–5198

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Vilches-Flores A, Delgado-Buenrostro NL, Navarrete-Vazquez G, Villalobos-Molina R (2010) CB1 cannabinoid receptor expression is regulated by glucose and feeding in rat pancreatic islets. Regul Pept 163:81–87

    CAS  PubMed  Article  Google Scholar 

  67. Kargl J, Brown AJ, Andersen L et al (2013) A selective antagonist reveals a potential role of G protein coupled receptor 55 in platelet and endothelial cell function. J Pharmacol Exp Ther 346:54–66

    CAS  PubMed  Article  Google Scholar 

  68. Moreno-Navarrete JM, Catalán V, Whyte L et al (2012) The L-α-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes 61:281–291

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Gasperi V, Dainese E, Oddi S, Sabatucci A, Maccarrone M (2013) GPR55 and its interaction with membrane lipids: comparison with other endocannabinoid-binding receptors. Curr Med Chem 20:64–78

    CAS  PubMed  Article  Google Scholar 

  70. Wu CS, Chen H, Sun H et al (2013) GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination. PLoS One 8:e60314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. McHugh D, Hu SJS, Rimmerman N et al (2010) N-arachidonoylglycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:1–14

    Article  CAS  Google Scholar 

  72. Díaz-Arteaga A, Vázquez MJ, Vazquez-Martínez R et al (2012) The atypical cannabinoid O-1602 stimulates food intake adiposity in rats. Diabetes Obes Metab 14:234–243

    PubMed  Article  Google Scholar 

  73. Henstridge CM, Balenga NA, Schröder R et al (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160:604–614

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Bermúdez-Silva FJ, Suárez J, Baixeras E et al (2008) Presence of functional cannabinoid receptors in human endocrine pancreas. Diabetologia 51:476–487

    PubMed  Article  CAS  Google Scholar 

  75. Jones RM, Leonard JN, Buzard DJ, Lehmann J (2009) GPR119 agonists for the treatment of type 2 diabetes. Expert Opin Ther Pat 19:1339–1359

    CAS  PubMed  Article  Google Scholar 

  76. Ning Y, O’Neill K, Lan H et al (2008) Endogenous and synthetic agonists of GPR119 differ in signalling pathways and their effects on insulin secretion in MIN6c4 insulinoma cells. Br J Pharmacol 155:1056–1065

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB (2003) Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett 554:381–388

    CAS  PubMed  Article  Google Scholar 

  78. Soga T, Ohishi T, Matsui T et al (2005) Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 326:744–751

    CAS  PubMed  Article  Google Scholar 

  79. Chu ZL, Jones RM, He H et al (2007) A role for β-cell-expressed G protein-coupled receptor 119 in glycaemic control by enhancing glucose-dependent insulin release. Endocrinology 148:2601–2609

    CAS  PubMed  Article  Google Scholar 

  80. Sakamoto K, Inoue H, Kawakami S et al (2006) Expression and distribution of GPR119 in pancreatic islets of mice and rats: predominant localization in pancreatic polypeptide-secreting PP-cells. Biochem Biophys Res Commun 351:474–480

    CAS  PubMed  Article  Google Scholar 

  81. Ohishi T, Yoshida S (2012) The therapeutic potential of GPR119 agonists for type 2 diabetes. Expert Opin Investig Drugs 21:321–328

    CAS  PubMed  Article  Google Scholar 

  82. Chu Z, Carroll C, Alfonso J et al (2008) A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycaemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 149:2038–2047

    CAS  PubMed  Article  Google Scholar 

  83. Chepurny OG, Bertinetti D, Diskar M et al (2013) Stimulation of proglucagon gene expression by human GPR119 in enteroendocrine L-cell line GLUTag. Mol Endocrinol 27:1267–1282

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Odori S, Hosoda K, Tomita T et al (2013) GPR119 expression in normal human tissues and islet cell tumors: evidence for its islet-gastrointestinal distribution, expression in pancreatic beta cell and alpha cells, and involvement in islet function. Metabolism 62:70–78

    CAS  PubMed  Article  Google Scholar 

  85. Overton HA, Babbs AJ, Doel SM et al (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agent. Cell Metab 3:167–175

    CAS  PubMed  Article  Google Scholar 

  86. Lauffer LM, Iakoubov R, Brubaker PL (2009) GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cells. Diabetes 58:1058–1066

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Cornall LM, Mathai ML, Hryciw DH, McAinch AJ (2013) Is GPR119 agonism an appropriate treatment modality for safe amelioration of metabolic diseases? Expert Opin Investig Drugs 22:487–498

    CAS  PubMed  Article  Google Scholar 

  88. Moran BM, Abdel-Wahab YH, Flatt PR, McKillop AM (2014) Activation of GPR119 by fatty acid agonists augments insulin release from clonal β-cells and isolated pancreatic islets and improves glucose tolerance in mice. Biol Chem 394:453–464

    Google Scholar 

  89. Kogure R, Toyama K, Hiyamuta S, Kojima I, Takeda S (2011) 5-Hydroxy-eicosapentaenoic acid is an endogenous GPR119 agonist and enhances glucose-dependent insulin secretion. Biochem Biophys Res Commun 416:58–63

    CAS  PubMed  Article  Google Scholar 

  90. Katz LB, Gambale JJ, Rothenberg PL et al (2012) Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomised, double-blind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes Metab 14:709–716

    CAS  PubMed  Article  Google Scholar 

  91. Polli JW, Hussey E, Bush M et al (2013) Evaluation of drug interactions of GSK1292263 (a GPR119 agonist) with statins: from in vitro data to clinical study design. Xenobiotica 43:498–508

    CAS  PubMed  Article  Google Scholar 

  92. Kim SR, Kim DH, Park SH et al (2013) In vivo efficacy of HD0471953: a novel GPR119 agonist for the treatment of type 2 diabetes mellitus. J Diabetes Res 2013:1–6

    Google Scholar 

  93. Cox HM, Tough IR, Woolston AM et al (2010) Peptide YY is critical for acylethanolamide receptor GPR119-induced activation of gastrointestinal mucosal responses. Cell Metab 11:532–542

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Yoshida S, Ohishi T, Matsui T, Shibasaki M (2010) Identification of a novel GPR119 agonist, AS1269574, with in vitro and in vivo glucose-stimulated insulin secretion. Biochem Biophys Res Commun 400:437–441

    CAS  PubMed  Article  Google Scholar 

  95. Yoshida S, Tanaka H, Oshima H et al (2010) AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. Biochem Biophys Res Commun 400:745–751

    CAS  PubMed  Article  Google Scholar 

  96. Yoshida S, Ohishi T, Matsui T et al (2011) The role of small molecule GPR119 agonist, AS-1535907, in glucose-stimulated insulin secretion and pancreatic β-cell function. Diabetes Obes Metab 13:34–41

    CAS  PubMed  Article  Google Scholar 

  97. Paulsen SJ, Larsen LK, Hansen G, Chelur S, Larsen PJ, Vrang N (2014) Expression of the fatty acid receptor GPR120 in the gut of diet-induced-obese rats and its role in GLP-1 secretion. PLoS One 9:e88227

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Hirasawa A, Tsumaya K, Awaji T et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    CAS  PubMed  Article  Google Scholar 

  99. Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G (2008) Free fatty acid receptors and drug discovery. Biol Pharm Bull 31:1847–1851

    CAS  PubMed  Article  Google Scholar 

  100. Miyauchi S, Hirasawa A, Iga T et al (2009) Distribution and regulation of protein expression of the free fatty acid receptor GPR120. N-S Arch Pharmacol 379:427–434

    CAS  Article  Google Scholar 

  101. Ichimura A, Hirasawa A, Poulain-Godefroy O et al (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and humans. Nature 483:350–357

    CAS  PubMed  Article  Google Scholar 

  102. Moran BM, Abdel-Wahab YH, Flatt PR, McKillop AM (2014) Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes Metab 16:1128–1139

    CAS  PubMed  Article  Google Scholar 

  103. Kebede MA, Alquier T, Latour MG, Poitout V (2009) Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab 11:10–20

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Stone VM, Dhayal S, Brocklehurst KJ et al (2014) GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57:1182–1191

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Iakoubov R, Izzo A, Yeung A, Whiteside CI, Brubaker PL (2007) Protein Kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells. Endocrinology 148:1089–1098

    CAS  PubMed  Article  Google Scholar 

  106. Gotoh C, Hong YH, Iga T et al (2007) The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun 354:591–597

    CAS  PubMed  Article  Google Scholar 

  107. Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134

    CAS  PubMed  Article  Google Scholar 

  108. Oh DY, Talukdar S, Bae EJ et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Katsuma S, Hatae N, Yano T et al (2005) Free fatty acids inhibits serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 280:19507–19515

    CAS  PubMed  Article  Google Scholar 

  110. Hara T, Hirasawa A, Sun Q et al (2009) Novel selective ligands for free fatty acid receptors GPR120 and GPR40. N-S Arch Pharmacol 380:247–255

    CAS  Article  Google Scholar 

  111. Shimpukade B, Hudson BD, Hovgaard CK, Milligan G, Ulven T (2012) Discovery of a potent and selective GPR120 agonist. J Med Chem 55:4511–4515

    CAS  PubMed  Article  Google Scholar 

  112. Gorjao R, Azevedo-Martins AK, Rodriques HG et al (2009) Comparative effects of DHA and EPA on cell function. Pharmacol Ther 122:56–64

    CAS  PubMed  Article  Google Scholar 

  113. Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597

    CAS  PubMed  Article  Google Scholar 

  114. Suzuki T, Igari S, Hirasawa A et al (2008) Identification of G protein-coupled receptor 120-selective agonists derived from PPAR gamma agonists. J Med Chem 51:7640–7644

    CAS  PubMed  Article  Google Scholar 

  115. Hudson BD, Shimpukade B, Mackenzie AE et al (2013) The pharmacology of a potent and selective agonist, TUG-891, demonstrates both potential opportunity and possible challenges to therapeutic agonism of FAR4 (GPR120). Mol Pharmacol 84:1–54

    Article  CAS  Google Scholar 

  116. Briscoe CP, Peat AJ, McKeown SC et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small agonist. Br J Pharmacol 148:619–628

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Morishita M, Tanaka T, Shida T, Takayama K (2008) Usefulness of colon targeted DHA and EPA as novel diabetes medications that promote intrinsic GLP-1 secretions. J Control Release 132:99–104

    CAS  PubMed  Article  Google Scholar 

  118. Li S, Sun Y, Liang CP et al (2009) Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Cir Res 105:1072–1082

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aine M. McKillop.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Human and animal rights

All procedures followed were in accordance with the ethical standards for the responsible committee on human experimentation (institutional and national) and with the Helsinki declaration of 1975, as revised in 2008.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moran, B.M., Flatt, P.R. & McKillop, A.M. G protein-coupled receptors: signalling and regulation by lipid agonists for improved glucose homoeostasis. Acta Diabetol 53, 177–188 (2016). https://doi.org/10.1007/s00592-015-0826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0826-9

Keywords

  • G protein-coupled receptor
  • Lipid agonists
  • Insulin secretion
  • Type 2 diabetes
  • Fatty acids