Skip to main content

Understanding type 2 diabetes: from genetics to epigenetics

Abstract

The known genetic variability (common DNA polymorphisms) does not account either for the current epidemics of type 2 diabetes or for the family transmission of this disorder. However, clinical, epidemiological and, more recently, experimental evidence indicates that environmental factors have an extraordinary impact on the natural history of type 2 diabetes. Some of these environmental hits are often shared in family groups and proved to be capable to induce epigenetic changes which alter the function of genes affecting major diabetes traits. Thus, epigenetic mechanisms may explain the environmental origin as well as the familial aggregation of type 2 diabetes much easier than common polymorphisms. In the murine model, exposure of parents to environmental hits known to cause epigenetic changes reprograms insulin sensitivity as well as beta-cell function in the progeny, indicating that certain epigenetic changes can be transgenerationally transmitted. Studies from different laboratories revealed that, in humans, lifestyle intervention modulates the epigenome and reverts environmentally induced epigenetic modifications at specific target genes. Finally, specific human epigenotypes have been identified which predict adiposity and type 2 diabetes with much greater power than any polymorphism so far identified. These epigenotypes can be recognized in easily accessible white cells from peripheral blood, indicating that, in the future, epigenetic profiling may enable effective type 2 diabetes prediction. This review discusses recent evidence from the literature supporting the immediate need for further investigation to uncover the power of epigenetics in the prediction, prevention and treatment of type 2 diabetes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23(5):203–209

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Schwenk RW, Vogel H, Schürmann A (2013) Genetic and epigenetic control of metabolic health. Mol Metab 2(4):337–347

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ungaro P, Mirra P, Oriente F, Nigro C, Ciccarelli M, Vastolo V, Longo M, Perruolo G, Spinelli R, Formisano P, Miele C, Beguinot F (2012) Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1. J Biol Chem 287(51):42951–42961

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ungaro P, Teperino R, Mirra P, Cassese A, Fiory F, Perruolo G, Miele C, Laakso M, Formisano P, Beguinot F (2008) Molecular cloning and characterization of the human PED/PEA-15 gene promoter reveal antagonistic regulation by hepatocyte nuclear factor 4alpha and chicken ovalbumin upstream promoter transcription factor II. J Biol Chem 283(45):30970–30979

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. 5.

    Oriente F, Fernandez Diaz LC, Miele C, Iovino S, Mori S, Diaz VM, Troncone G, Cassese A, Formisano P, Blasi F, Beguinot F (2008) Prep1 deficiency induces protection from diabetes and increased insulin sensitivity through a p160-mediated mechanism. Mol Cell Biol 28(18):5634–5645

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. 6.

    Oriente F, Iovino S, Cabaro S, Cassese A, Longobardi E, Miele C, Ungaro P, Formisano P, Blasi F, Beguinot F (2011) Prep1 controls insulin glucoregulatory function in liver by transcriptional targeting of SHP1 tyrosine phosphatase. Diabetes 60(1):138–147

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. 7.

    Oriente F, Cabaro S, Liotti A, Longo M, Parrillo L, Pagano TB, Raciti GA, Penkov D, Paciello O, Miele C, Formisano P, Blasi F, Beguinot F (2013) PREP1 deficiency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice. Diabetologia 56(12):2713–2722

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Szyf M (2007) The dynamic epigenome and its implications in toxicology. Toxicol Sci 100(1):7–23

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107(12):1403–1413

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Paneni F, Costantino S, Volpe M, Lüscher TF, Cosentino F (2013) Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis 230(2):191–197

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Piarulli F, Sartore G, Lapolla A (2013) Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol 50(2):101–110

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467(7318):963–966

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, Wainstein J, Friedlander Y, Levy-Lahad E, Glaser B, Hellman A (2012) Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet 21(2):371–383

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. 14.

    International Diabetes Federation (2013) IDF diabetes atlas, 6th edn. Brussels, Belgium

    Google Scholar 

  15. 15.

    Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G, 2010 China Noncommunicable Disease Surveillance Group (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310(9):948–959

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Billings LK, Florez JC (2010) The genetics of type 2 diabetes: what have we learned from GWAS? Ann NY Acad Sci 1212:59–77

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Raciti GA, Nigro C, Longo M, Parrillo L, Miele C, Formisano P, Béguinot F (2014) Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics 6(2):229–238

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zierath JR, Barrès RE (2011) Nutritional status affects the epigenomic profile of peripheral blood cells. Epigenomics 3(3):259–260

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Bennett PH (1990) Epidemiology of diabetes mellitus. In: Rifkin H, Porte D Jr (eds) Ellenberg and Rifkin’s diabetes mellitus, 4th edn. Elsevier, New York, pp 363–370

    Google Scholar 

  20. 20.

    InterAct Consortium, Scott RA, Langenberg C, Sharp SJ, Franks PW, Rolandsson O, Drogan D, van der Schouw YT, Ekelund U, Kerrison ND, Ardanaz E, Arriola L, Balkau B, Barricarte A, Barroso I, Bendinelli B, Beulens JW, Boeing H, de Lauzon-Guillain B, Deloukas P, Fagherazzi G, Gonzalez C, Griffin SJ, Groop LC, Halkjaer J, Huerta JM, Kaaks R, Khaw KT, Krogh V, Nilsson PM, Norat T, Overvad K, Panico S, Rodriguez-Suarez L, Romaguera D, Romieu I, Sacerdote C, Sánchez MJ, Spijkerman AM, Teucher B, Tjonneland A, Tumino R, van der DL A, Wark PA, McCarthy MI, Riboli E, Wareham NJ (2013) The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 56(1):60–69

    Article  Google Scholar 

  21. 21.

    Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham offspring study. Diabetes 49(12):2201–2207

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Klein BE, Klein R, Moss SE, Cruickshanks KJ (1996) Parental history of diabetes in a population-based study. Diabetes Care 19(8):827–830

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20(2):87–93

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Knowles NG, Landchild MA, Fujimoto WY, Kahn SE (2002) Insulin and amylin release are both diminished in first-degree relatives of subjects with type 2 diabetes. Diabetes Care 25(2):292–297

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Raciti GA, Beguinot F (2015) Epigenetics of T2DM. Diapedia. http://www.diapedia.org/3105513816/rev/3. Accessed 09 Feb 2015

  26. 26.

    De Jesus DF, Kulkarni RN (2014) Epigenetic modifiers of islet function and mass. Trends Endocrinol Metab 25(12):628–636

    Article  PubMed  Google Scholar 

  27. 27.

    Harris MI (1989) Impaired glucose tolerance in the US population. Diabetes Care 12:464–474

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Joost HG (2008) Pathogenesis, risk assessment and prevention of type 2 diabetes mellitus. Obes Facts 1(3):128–137

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Vigliotta G, Miele C, Santopietro S, Portella G, Perfetti A, Maitan MA, Cassese A, Oriente F, Trencia A, Fiory F, Romano C, Tiveron C, Tatangelo L, Troncone G, Formisano P, Beguinot F (2004) Overexpression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action. Mol Cell Biol 24(11):5005–5015

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  30. 30.

    Condorelli G, Vigliotta G, Iavarone C, Caruso M, Tocchetti CG, Andreozzi F, Cafieri A, Tecce MF, Formisano P, Beguinot L, Beguinot F (1998) PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus. EMBO J 17(14):3858–3866

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. 31.

    Condorelli G, Vigliotta G, Trencia A, Maitan MA, Caruso M, Miele C, Oriente F, Santopietro S, Formisano P, Beguinot F (2001) Protein kinase C (PKC)-α activation inhibits PKC-ζ and mediates the action of PED/PEA-15 on glucose transport in the L6 skeletal muscle cells. Diabetes 50(6):1244–1252

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Miele C, Raciti GA, Cassese A, Romano C, Giacco F, Oriente F, Paturzo F, Andreozzi F, Zabatta A, Troncone G, Bosch F, Pujol A, Chneiweiss H, Formisano P, Beguinot F (2007) PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells. Diabetes 56(3):622–633

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Dunn GA, Bale TL (2011) Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152(6):2228–2236

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. 34.

    Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411

    Article  PubMed  Google Scholar 

  35. 35.

    Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, Näslund E, Zierath JR (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3(4):1020–1027

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, Ling C (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572

    PubMed Central  Article  PubMed  Google Scholar 

  37. 37.

    Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51(4):615–622

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. 39.

    Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198

    Article  PubMed  Google Scholar 

  40. 40.

    Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54(2):360–367

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. 41.

    Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renström E, Wollheim CB, Nitert MD, Ling C (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26(7):1203–1212

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Liu ZH, Chen LL, Deng XL, Song HJ, Liao YF, Zeng TS, Zheng J, Li HQ (2012) Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in type 2 diabetes. J Endocrinol Invest 35(6):585–589

    CAS  PubMed  Google Scholar 

  43. 43.

    Stepanow S, Reichwald K, Huse K, Gausmann U, Nebel A, Rosenstiel P, Wabitsch M, Fischer-Posovszky P, Platzer M (2011) Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1. PLoS One 6(5):e17711

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  44. 44.

    Souren NY, Tierling S, Fryns JP, Derom C, Walter J, Zeegers MP (2011) DNA methylation variability at growth-related imprints does not contribute to overweight in monozygotic twins discordant for BMI. Obesity 19(7):1519–1522

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, Keil T, Lee YA, Grueters A, Krude H (2012) An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 8(3):e1002543

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  46. 46.

    Zhao J, Goldberg J, Vaccarino V (2013) Promoter methylation of serotonin transporter gene is associated with obesity measures: a monozygotic twin study. Int J Obes 37(1):140–145

    CAS  Article  Google Scholar 

  47. 47.

    Groom A, Potter C, Swan DC, Fatemifar G, Evans DM, Ring SM, Turcot V, Pearce MS, Embleton ND, Smith GD, Mathers JC, Relton CL (2012) Postnatal growth and DNA methylation are associated with differential gene expression of the TACSTD2 gene and childhood fat mass. Diabetes 61(2):391–400

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. 48.

    Relton CL, Groom A, St Pourcain B, Sayers AE, Swan DC, Embleton ND, Pearce MS, Ring SM, Northstone K, Tobias JH, Trakalo J, Ness AR, Shaheen SO, Smith GD (2012) DNA methylation patterns in cord blood DNA and body size in childhood. PLoS One 7(3):e31821

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  49. 49.

    Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92(6):707–715

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported, in part, by the European Foundation for the Study of Diabetes (EFSD), the Associazione Italiana per la Ricerca sul Cancro (AIRC) and by the Ministero dell’Università e della Ricerca Scientifica (Grants PRIN and FIRB-MERIT, and PON 01_02460). This work was also supported by the P.O.R. Campania FSE 2007-2013, Project CREMe.

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Statement of human rights

This article does not contain any studies with human participants performed by any of the authors.

Statement on the welfare of animals

All animal procedures in studies conducted by the authors and cited in this review were in accordance with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (publication no. 85-23, revised 1996), and experiments were approved by the ethics committee of the Federico II University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Béguinot.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raciti, G.A., Longo, M., Parrillo, L. et al. Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol 52, 821–827 (2015). https://doi.org/10.1007/s00592-015-0741-0

Download citation

Keywords

  • Type 2 diabetes
  • Epigenetics
  • Methylation
  • Histone modifications
  • MicroRNA
  • Personalized medicine