Skip to main content


Log in

Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript



High glucose-induced oxidative stress has been suggested as one of the mediators of endothelial damage in diabetes. The major endothelial protein, endoglin, has been found overexpressed in the vessels during pathological situations, but little is known about its relation to diabetic vascular complications. To clarify the role of endoglin in endothelial injury, we sought to determine the effects of high and oscillating glucose on its expression.


Furthermore, the activation of the Krüppel-like factor 6 (KLF-6) and the hypoxia-inducible factor-1α (HIF-1α) as possible regulators of endoglin expression has been evaluated. The possible role of the oxidative stress has been studied evaluating the effects of the antioxidant alpha-lipoic acid (ALA) and the cellular antioxidant response mediated by NAD(P)H:quinine-oxido-reductase-1 (NQO-1) and heme oxygenase-1 (HO-1).


Primary HUVECs were cultured for 21 days in normal, high and oscillating glucose (5, 25 and 5/25 mmol/l every 24 h, respectively) with/without ALA. In oscillating and high glucose total endoglin, its soluble form (sEng), KLF-6 and HIF-1α were significantly increased. Simultaneously, the oxidative DNA stress markers 8-OHdG and H2A.X were elevated. Moreover, ENG gene transcriptional rate increased during glucose exposures concomitantly with increased KLF-6 nuclear translocations. ALA significantly reduced all these phenomena. Interestingly, during oscillating and chronic high glucose, NQO-1 and HO-1 did not increase, but ALA induced their overexpression.


Together, these findings provide novel clue about endoglin in the regulation of high glucose-mediated vascular damage in HUVECs and the role of oxidative stress in this regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ceriello A, Testa R (2009) Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care 32(Suppl 2):S232–S236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ceriello A (2010) Hyperglycaemia and the vessel wall: the pathophysiological aspects on the atherosclerotic burden in patients with diabetes. Eur J Cardiovasc Prev Rehabil 17(Suppl 1):S15–S19

    Article  PubMed  Google Scholar 

  4. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804

    Article  CAS  PubMed  Google Scholar 

  5. Zhu Y, Sun Y, Xie L, Jin K, Sheibani N, Greenberg DA (2003) Hypoxic induction of endoglin via mitogen-activated protein kinases in mouse brain microvascular endothelial cells. Stroke 34:2483–2488

    Article  CAS  PubMed  Google Scholar 

  6. Bernabeu C, Conley BA, Vary CP (2007) Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem 102:1375–1388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sánchez-Elsner T, Botella LM, Velasco B, Langa C, Bernabéu C (2002) Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem 277:43799–43808

    Article  PubMed  Google Scholar 

  8. Atkins GB, Jain MK (2007) Role of Krüppel-like transcription factors in endothelial biology. Circ Res 100:1686–1695

    Article  CAS  PubMed  Google Scholar 

  9. Torsney E, Charlton R, Parums D, Collis M, Arthur HM (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51:464–470

    Article  CAS  PubMed  Google Scholar 

  10. Lopez-Novoa JM, Bernabeu C (2010) The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 299:H959–H974

    Article  CAS  PubMed  Google Scholar 

  11. Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CF, ten Dijke P (2010) Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 70:4141–4150

    Article  CAS  PubMed  Google Scholar 

  12. Valbuena-Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez-Nuñez M, Llano E, Pendas AM, Díaz M, Castrillo A, Lopez-Novoa JM, Bernabeu C (2012) Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation 126:2612–2624

    Article  CAS  PubMed  Google Scholar 

  13. Kaitu’u-Lino TJ, Palmer KR, Whitehead CL, Williams E, Lappas M, Tong S (2012) MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin. Am J Pathol 180:888–894

    Article  PubMed  Google Scholar 

  14. Blázquez-Medela AM, García-Ortiz L, Gómez-Marcos MA, Recio-Rodríguez JI, Sánchez-Rodríguez A, López-Novoa JM, Martínez-Salgado C (2010) Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med 8:86

    Article  PubMed Central  PubMed  Google Scholar 

  15. Qi W, Chen X, Holian J, Tan CY, Kelly DJ, Pollock C (2009) Transcription factors Kruppel-like factor 6 and peroxisome proliferator-activated receptor-{gamma} mediate high glucose-induced thioredoxin-interacting protein. Am J Pathol 175:1858–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Botella LM, Sánchez-Elsner T, Sanz-Rodriguez F, Kojima S, Shimada J, Guerrero-Esteo M, Cooreman MP, Ratziu V, Langa C, Vary CP, Ramirez JR, Friedman S, Bernabéu C (2002) Transcriptional activation of endoglin and transforming growth factor-beta signaling components by cooperative interaction between Sp1 and KLF6: their potential role in the response to vascular injury. Blood 100:4001–4010

    Article  CAS  PubMed  Google Scholar 

  17. Cullingford TE, Butler MJ, Marshall AK, el Tham L, Sugden PH, Clerk A (2008) Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. Biochim Biophys Acta 178:1229–1236

    Article  Google Scholar 

  18. Stärkel P, Sempoux C, Leclercq I, Herin M, Deby C, Desager JP, Horsmans Y (2003) Oxidative stress, KLF6 and transforming growth factor-beta up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from uncomplicated steatosis in rats. J Hepatol 39:538–546

    Article  PubMed  Google Scholar 

  19. Holian J, Qi W, Kelly DJ, Zhang Y, Mreich E, Pollock CA, Chen XM (2008) Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells. Am J Physiol Renal Physiol 295:F1388–F1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27:912–925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG, Permert J, Wang F (2013) Excess glucose induces hypoxia-inducible factor-1α in pancreatic cancer cells and stimulates glucose metabolism and cell migration. Cancer Biol Ther 14:428–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A (2011) Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 54:1219–1226

    Article  CAS  PubMed  Google Scholar 

  25. Ihnat MA, Thorpe JE, Kamat CD, Szabó C, Green DE, Warnke LA, Lacza Z, Cselenyák A, Ross K, Shakir S, Piconi L, Kaltreider RC, Ceriello A (2007) Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 50:1523–1531

    Article  CAS  PubMed  Google Scholar 

  26. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rossi E, Sanz-Rodriguez F, Eleno N, Düwell A, Blanco FJ, Langa C, Botella LM, Cabañas C, Lopez-Novoa JM, Bernabeu C (2013) Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 121:403–415

    Article  CAS  PubMed  Google Scholar 

  29. Abu El-Asrar AM, Nawaz MI, Kangave D, Abouammoh M, Mohammad G (2012) High-mobility group box-1 and endothelial cell angiogenic markers in the vitreous from patients with proliferative diabetic retinopathy. Mediators Inflamm 2012:697489

    PubMed Central  PubMed  Google Scholar 

  30. Docherty NG, López-Novoa JM, Arevalo M, Düwel A, Rodriguez-Peña A, Pérez-Barriocanal F, Bernabeu C, Eleno N (2006) Endoglin regulates renal ischaemia-reperfusion injury. Nephrol Dial Transplant 21:2106–2119

    Article  CAS  PubMed  Google Scholar 

  31. Ma X, Labinaz M, Goldstein J, Miller H, Keon WJ, Letarte M, O’Brien E (2000) Endoglin is overexpressed after arterial injury and is required for transforming growth factor-beta-induced inhibition of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 20:2546–2552

    Article  CAS  PubMed  Google Scholar 

  32. van Laake LW, van den Driesche S, Post S, Feijen A, Jansen MA, Driessens MH, Mager JJ, Snijder RJ, Westermann CJ, Doevendans PA, van Echteld CJ, ten Dijke P, Arthur HM, Goumans MJ, Lebrin F, Mummery CL (2006) Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114:2288–2297

    Article  PubMed  Google Scholar 

  33. Suzuki T, Aizawa K, Matsumura T, Nagai R (2005) Vascular implications of the Krüppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25:1135–1141

    Article  CAS  PubMed  Google Scholar 

  34. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 22:198–203

    Article  CAS  PubMed  Google Scholar 

  35. Quagliaro L, Piconi L, Assaloni R, Da Ros R, Szabó C, Ceriello A (2007) Primary role of superoxide anion generation in the cascade of events leading to endothelial dysfunction and damage in high glucose treated HUVEC. Nutr Metab Cardiovasc Dis 17:257–267

    Article  CAS  PubMed  Google Scholar 

  36. Wu CY, Kang HY, Yang WL, Wu J, Jeong YS, Wang J, Chan CH, Lee SW, Zhang X, Lamothe B, Campos AD, Darnay BG, Lin HK (2011) Critical role of monoubiquitination of histone H2AX protein in histone H2AX phosphorylation and DNA damage response. J Biol Chem 286:30806–30815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radical Biol Med 19:227–250

    Article  CAS  Google Scholar 

  38. Sun LQ, Chen YY, Wang X, Li XJ, Xue B, Qu L, Zhang TT, Mu YM, Lu JM (2012) The protective effect of alpha lipoic acid on Schwann cells exposed to constant or intermittent high glucose. Biochem Pharmacol 84:961–973

    Article  CAS  PubMed  Google Scholar 

  39. Beiroa D, Romero-Picó A, Langa C, Bernabeu C, López M, López-Novoa JM, Nogueiras R, Diéguez C (2013) Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet. PLoS one 8:e54591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, Ballabh P, de Cabo R, Sonntag WE, Csiszar A (2011) Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol 301:H363–H372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wang Y, Ying L, Chen YY, Shen YL, Guo R, Jin KK, Wang LX (2014) Induction of heme oxygenase-1 ameliorates vascular dysfunction in streptozotocin-induced type 2 diabetic rats. Vascul Pharmacol 61:16–24

    Article  CAS  PubMed  Google Scholar 

  42. Cudmore M, Ahmad S, Al-Ani B, Fujisawa T, Coxall H, Chudasama K, Devey LR, Wigmore SJ, Abbas A, Hewett PW, Ahmed A (2007) Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation 115:1789–1797

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Lucia La Sala, Gemma Pujadas, Valeria De Nigris, Silvia Canivell, Anna Novials, Stefano Genovese, Antonio Ceriello declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Antonio Ceriello.

Additional information

Managed by Massimo Federici.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 357 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Sala, L., Pujadas, G., De Nigris, V. et al. Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress. Acta Diabetol 52, 505–512 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: