Skip to main content

Advertisement

Log in

Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play a crucial role in the pathogenesis of type 2 diabetes (T2D); they regulate several metabolic pathways including insulin secretion, glucose homeostasis, so their potential as biomarkers of diagnosis and prognosis has became increasingly appreciated. In this study, we explore serum miRNA profiles in T2D patients. A total of ten candidate miRNAs were identified by Solexa sequencing scanning and followed by a stem-loop quantitative reverse transcription PCR (qRT-PCR) to assess these candidate serum miRNAs. The results of qRT-PCR assessment revealed low serum levels of miR-23a, let-7i, miR-486, miR-96, miR-186, miR-191, miR-192, and miR-146a in T2D. Except for significantly lower in T2D and pre-diabetes patients compared with normal glucose tolerance (NGT) controls (P = 2.87E−05 and P = 3.75E−02), the levels of miR-23a demonstrated also significant decline in T2D patients compared with pre-diabetes patients (P = 1.06E−02). This marker yielded an AUC of 0.835 (95 % CI 0.717–0.954). At a cutoff value of 1.645, the sensitivity was 79.2 % and the specificity was 75.0 % in discriminating T2D patients from NGT normal controls. These results revealed that serum miR-23a was a valuable biomarker for early detection of T2D and pre-diabetes with NGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alberti KGMM, Zimmet P (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  PubMed  CAS  Google Scholar 

  2. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, Mohan V (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol Cell Biochem 351:197–205

    Article  PubMed  CAS  Google Scholar 

  3. Brase JC, Wuttig D, Kuner R, Sultmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR (2005) Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res 33:e179–e179

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  PubMed  CAS  Google Scholar 

  6. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495

    Article  PubMed  CAS  Google Scholar 

  7. El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E (2008) miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes 57:2708–2717

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feng B, Chen S, George B, Feng Q, Chakrabarti S (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metab Res Rev 26:40–49

    Article  CAS  Google Scholar 

  9. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  PubMed  CAS  Google Scholar 

  10. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, Benjamin H, Kushnir M, Cholakh H, Melamed N (2008) Serum microRNAs are promising novel biomarkers. PLoS ONE 3:e3148

    Article  PubMed  PubMed Central  Google Scholar 

  11. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127:118–126

    Article  PubMed  CAS  Google Scholar 

  15. Jackson DB (2009) Serum-based microRNAs: are we blinded by potential? PNAS 106:E5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SLT, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97:E2271–E2276

    Article  PubMed  CAS  Google Scholar 

  17. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69

    Article  PubMed  CAS  Google Scholar 

  18. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  19. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  20. Li M, Xia Y, Gu Y, Zhang K, Lang Q, Chen L, Guan J, Luo Z, Chen H, Li Y (2010) MicroRNAome of porcine pre-and postnatal development. PLoS ONE 5:e11541

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  22. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang J-Y, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid–induced pancreatic β-cell dysfunction. Diabetes 57:2728–2736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105:10513–10518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  PubMed  CAS  Google Scholar 

  25. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M (2009) miR-375 maintains normal pancreatic α-and β-cell mass. Proc Natl Acad Sci 106:5813–5818

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Raychaudhuri S (2012) MicroRNAs overexpressed in growth-restricted rat skeletal muscles regulate the glucose transport in cell culture targeting central TGF-β factor SMAD4. PLoS ONE 7:e34596

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59:978–986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Shaw J, Sicree R, Zimmet P (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  PubMed  CAS  Google Scholar 

  30. Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136:586–591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119:586–593

    Article  PubMed  CAS  Google Scholar 

  32. Wei Z, Liu X, Feng T, Chang Y (2011) Novel and conserved micrornas in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int J Biol Sci 7:180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321

    Article  PubMed  Google Scholar 

  34. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  35. Wong L, Lee K, Russell I, Chen C (2007) Endogenous controls for real-time quantitation of miRNA using TaqMan® microRNA assays. Macmillan Publishers Limited, New York

    Google Scholar 

  36. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362:1090–1101

    Article  PubMed  CAS  Google Scholar 

  37. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E (2010) Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes novelty and significance. Circ Res 107:810–817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Development Program of Hangzhou City (20110733Q21), Zhejiang Provincial Top Key Discipline of Biology, and Zhejiang Province Undergraduate Scientific and Technological Innovation Project (2011R406029). We also thanks to Dr. Ye Sende, Prevention and Health Care Outpatient Department of Hangzhou City for his help to collection of serum samples of T2D and normal subjects.

Conflict of interest

All the authors including Zhangping Yang, Haimin chen, Hongqiang si, Xuan Li, Xianfeng Ding, Qing Sheng, Ping Chen, and Hongqiang Zhang declare that they have no conflict of interest.

Ethical Standard

All human subjects used in the study “Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes” have been reviewed by the Research Ethics Committee, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, P. R. China and have been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. All samples were collected with informed consent of the patients. Ethics Committee specifically approved that not informed consent was required because data were going to be analyzed anonymously. Furthermore, there is no security and privacy violation to the patient's health in our study.

Human and Animal Rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haimin Chen.

Additional information

Managed by Massimo Porta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Chen, H., Si, H. et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 51, 823–831 (2014). https://doi.org/10.1007/s00592-014-0617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0617-8

Keywords

Navigation