Skip to main content

Advertisement

Log in

Serum uric acid predicts vascular complications in adults with type 1 diabetes: the coronary artery calcification in type 1 diabetes study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Epidemiologic evidence supports a link between serum uric acid (SUA) and vascular complications in diabetes, but it remains unclear whether SUA improves the ability of conventional risk factor to predict complications. We hypothesized that SUA at baseline would independently predict the development of vascular complications over 6 years and that the addition of SUA to American Diabetes Association’s ABC risk factors (HbA1c, BP, LDL-C) would improve vascular complication prediction over 6 years in adults with type 1 diabetes. Study participants (N = 652) were 19–56 year old at baseline and re-examined 6 years later. Diabetic nephropathy was defined as incident albuminuria or rapid GFR decline (>3.3 %/year) estimated by the CKD-EPI cystatin C. Diabetic retinopathy (DR) was based on self-reported history, and proliferative diabetic retinopathy (PDR) was defined as laser eye therapy; coronary artery calcium (CAC) was measured using electron-beam computed tomography. Progression of CAC (CACp) was defined as a change in the square-root-transformed CAC volume ≥2.5. Predictors of each complication were examined in stepwise logistic regression with subjects with complications at baseline excluded from analyses. C-statistics, integrated discrimination indices and net-reclassification improvement were utilized for prediction performance analyses. SUA independently predicted development of incident albuminuria (OR 1.8, 95 % CI 1.2–2.7), rapid GFR decline (1.9, 1.1–3.3), DR (1.4, 1.1–1.9), PDR (2.1, 1.4–3.0) and CACp (1.5, 1.1–1.9). SUA improved the discrimination and net-classification risk of vascular complications over 6 years. SUA independently predicted the development of vascular complications in type 1 diabetes and also improved the reclassification of vascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forlenza GP, Rewers M (2011) The epidemic of type 1 diabetes: what is it telling us? Curr Opin Endocrinol Diabetes Obes 18(4):248–251. doi:10.1097/MED.0b013e32834872ce

    Article  PubMed  Google Scholar 

  2. Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC (2013) The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care 36(8):2271–2279. doi:10.2337/dc12-2258

    Article  PubMed  PubMed Central  Google Scholar 

  3. Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JE, Haffner SM, Hsueh W, Rewers M, Roberts BT, Savage PJ, Skarlatos S, Wassef M, Rabadan-Diehl C (2005) Report of the national heart, lung, and blood institute-national institute of diabetes and digestive and kidney diseases working group on cardiovascular complications of type 1 diabetes mellitus. Circulation 111(25):3489–3493. doi:10.1161/CIRCULATIONAHA.104.529651

    Article  PubMed  Google Scholar 

  4. Palmer LJ (1948) Medical and surgical vascular complications of diabetes. J Am Med Assoc 138(5):351–353; Disc, 355

    Article  PubMed  CAS  Google Scholar 

  5. Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, Rand LI, Christlieb AR, Bradley RF, Kahn CR (1987) Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol 59(8):750–755

    Article  PubMed  CAS  Google Scholar 

  6. Orchard TJ, Secrest AM, Miller RG, Costacou T (2010) In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh epidemiology of diabetes complications study. Diabetologia 53(11):2312–2319. doi:10.1007/s00125-010-1860-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Snell-Bergeon JK, Hokanson JE, Jensen L, MacKenzie T, Kinney G, Dabelea D, Eckel RH, Ehrlich J, Garg S, Rewers M (2003) Progression of coronary artery calcification in type 1 diabetes: the importance of glycemic control. Diabetes Care 26(10):2923–2928

    Article  PubMed  Google Scholar 

  8. Sipila K, Kahonen M, Salomaa V, Paivansalo M, Karanko H, Varpula M, Jula A, Kaaja R, Kesaniemi YA, Reunanen A, Moilanen L (2012) Carotid artery intima-media thickness and elasticity in relation to glucose tolerance. Acta Diabetol 49(3):215–223. doi:10.1007/s00592-011-0291-z

    Article  PubMed  Google Scholar 

  9. Salminen M, Kuoppamaki M, Vahlberg T, Raiha I, Irjala K, Kivela SL (2011) Metabolic syndrome and vascular risk: a 9-year follow-up among the aged in Finland. Acta Diabetol 48(2):157–165. doi:10.1007/s00592-010-0251-z

    Article  PubMed  CAS  Google Scholar 

  10. Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A, Marini MA, Perticone F (2014) High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol. doi:10.1007/s00592-014-0576-0

    Google Scholar 

  11. Bjornstad P, Snell-Bergeon JK, Rewers M, Jalal D, Chonchol MB, Johnson RJ, Maahs DM (2013) Early diabetic nephropathy: a complication of reduced insulin sensitivity in type 1 diabetes. Diabetes Care 36(11):3678–3683. doi:10.2337/dc13-0631

    Article  PubMed  CAS  Google Scholar 

  12. Bjornstad P, Snell-Bergeon JK, McFann K, Wadwa RP, Rewers M, Rivard CJ, Jalal D, Chonchol MB, Johnson RJ, Maahs DM (2013) Serum uric acid and insulin sensitivity in adolescents and adults with and without type 1 diabetes. J Diabetes Complications. doi:10.1016/j.jdiacomp.2013.12.007

    PubMed  Google Scholar 

  13. Jalal DI, Rivard CJ, Johnson RJ, Maahs DM, McFann K, Rewers M, Snell-Bergeon JK (2010) Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the coronary artery calcification in type 1 diabetes study. Nephrol Dial Transplant 25(6):1865–1869. doi:10.1093/ndt/gfp740

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Ficociello LH, Rosolowsky ET, Niewczas MA, Maselli NJ, Weinberg JM, Aschengrau A, Eckfeldt JH, Stanton RC, Galecki AT, Doria A, Warram JH, Krolewski AS (2010) High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up. Diabetes Care 33(6):1337–1343. doi:10.2337/dc10-0227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Rodrigues TC, Maahs DM, Johnson RJ, Jalal DI, Kinney GL, Rivard C, Rewers M, Snell-Bergeon JK (2010) Serum uric acid predicts progression of subclinical coronary atherosclerosis in individuals without renal disease. Diabetes Care 33(11):2471–2473. doi:10.2337/dc10-1007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Maahs DM, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson J, Ehrlich J, Garg S, Eckel RH, Rewers MJ (2005) Hypertension prevalence, awareness, treatment, and control in an adult type 1 diabetes population and a comparable general population. Diabetes Care 28(2):301–306

    Article  PubMed  Google Scholar 

  17. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367(1):20–29. doi:10.1056/NEJMoa1114248

    Article  PubMed  CAS  Google Scholar 

  18. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, Doria A, Warram JH (2013) Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. doi:10.2337/dc13-0985

    PubMed  Google Scholar 

  19. Maahs DM, Jalal D, McFann K, Rewers M, Snell-Bergeon JK (2011) Systematic shifts in cystatin C between 2006 and 2010. Clin J Am Soc Nephrol 6(8):1952–1955. doi:10.2215/CJN.11271210

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hokanson JE, MacKenzie T, Kinney G, Snell-Bergeon JK, Dabelea D, Ehrlich J, Eckel RH, Rewers M (2004) Evaluating changes in coronary artery calcium: an analytic method that accounts for interscan variability. AJR Am J Roentgenol 182(5):1327–1332. doi:10.2214/ajr.182.5.1821327

    Article  PubMed  Google Scholar 

  21. Grassi MA, Mazzulla DA, Knudtson MD, Huang WW, Lee KE, Klein BE, Nicolae DL, Klein R (2009) Patient self-report of prior laser treatment reliably indicates presence of severe diabetic retinopathy. Am J Ophthalmol 147(3):501–504. doi:10.1016/j.ajo.2008.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grassi MA, Sun W, Gangaputra S, Cleary PA, Hubbard L, Lachin JM, Gao X, Kiss S, Barkmeier AJ, Almony A, Davis M, Klein R, Danis RP (2013) Validity of self-report in type 1 diabetic subjects for laser treatment of retinopathy. Ophthalmology. doi:10.1016/j.ophtha.2013.06.002

    PubMed Central  Google Scholar 

  23. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172. doi:10.1002/sim.2929; discussion 207–112

    Article  PubMed  Google Scholar 

  24. Pencina MJ, D’Agostino RB, Pencina KM, Janssens AC, Greenland P (2012) Interpreting incremental value of markers added to risk prediction models. Am J Epidemiol 176(6):473–481. doi:10.1093/aje/kws207

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pencina MJ, D’Agostino RB, Vasan RS (2010) Statistical methods for assessment of added usefulness of new biomarkers. Clin Chem Lab Med 48(12):1703–1711. doi:10.1515/CCLM.2010.340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW (2014) Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Ann Intern Med 160(2):122–131

    Article  PubMed  Google Scholar 

  27. Fox CS, Gona P, Larson MG, Selhub J, Tofler G, Hwang SJ, Meigs JB, Levy D, Wang TJ, Jacques PF, Benjamin EJ, Vasan RS (2010) A multi-marker approach to predict incident CKD and microalbuminuria. J Am Soc Nephrol 21(12):2143–2149. doi:10.1681/ASN.2010010085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Budoff MJ, Lane KL, Bakhsheshi H, Mao S, Grassmann BO, Friedman BC, Brundage BH (2000) Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol 86(1):8–11

    Article  PubMed  CAS  Google Scholar 

  29. McEvoy JW (2010) Coronary artery calcium score and cardiovascular event prediction. J Am Med Assoc 304(7):741–742. doi:10.1001/jama.2010.1143; author reply 742

    Article  CAS  Google Scholar 

  30. McEvoy JW, Blaha MJ, Defilippis AP, Budoff MJ, Nasir K, Blumenthal RS, Jones SR (2010) Coronary artery calcium progression: an important clinical measurement? A review of published reports. J Am Coll Cardiol 56(20):1613–1622. doi:10.1016/j.jacc.2010.06.038

    Article  PubMed  Google Scholar 

  31. Feig DI, Mazzali M, Kang DH, Nakagawa T, Price K, Kannelis J, Johnson RJ (2006) Serum uric acid: a risk factor and a target for treatment? J Am Soc Nephrol 17(4 Suppl 2):S69–S73. doi:10.1681/ASN.2005121331

    Article  PubMed  CAS  Google Scholar 

  32. Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D, Perkins BA, Pop-Busui R, Rossing P, Mauer M, Doria A (2013) Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr Diab Rep. doi:10.1007/s11892-013-0381-0

    PubMed  PubMed Central  Google Scholar 

  33. Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH (2009) Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 58(7):1668–1671. doi:10.2337/db09-0014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Krizova L, Kalousova M, Kubena A, Benakova H, Zima T, Kovarik Z, Kalvoda J, Kalvodova B (2011) Increased uric acid and glucose concentrations in vitreous and serum of patients with diabetic macular oedema. Ophthalmic Res 46(2):73–79. doi:10.1159/000322994

    Article  PubMed  CAS  Google Scholar 

  35. Miyamoto M, Kotani K, Okada K, Fujii Y, Konno K, Ishibashi S, Taniguchi N (2012) The correlation of common carotid arterial diameter with atherosclerosis and diabetic retinopathy in patients with type 2 diabetes mellitus. Acta Diabetol 49(1):63–68. doi:10.1007/s00592-011-0287-8

    Article  PubMed  CAS  Google Scholar 

  36. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF (2011) The diabetic cardiomyopathy. Acta Diabetol 48(3):173–181. doi:10.1007/s00592-010-0180-x

    Article  PubMed  Google Scholar 

  37. Mazzali M, Jefferson JA, Ni Z, Vaziri ND, Johnson RJ (2003) Microvascular and tubulointerstitial injury associated with chronic hypoxia-induced hypertension. Kidney Int 63(6):2088–2093

    Article  PubMed  Google Scholar 

  38. Sochett EB, Cherney DZ, Curtis JR, Dekker MG, Scholey JW, Miller JA (2006) Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J Am Soc Nephrol 17(6):1703–1709

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Xiang G, Xiang L, Sun H (2014) Serum uric acid is associated with arterial stiffness in men with newly diagnosed type 2 diabetes mellitus. J Endocrinol Invest. doi:10.1007/s40618-013-0034-9

    Google Scholar 

  40. Cicero AF, Salvi P, D’Addato S, Rosticci M, Borghi C (2014) Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella heart study. J Hypertens 32(1):57–64. doi:10.1097/HJH.0b013e328365b916

    Article  PubMed  CAS  Google Scholar 

  41. Myllymaki J, Honkanen T, Syrjanen J, Helin H, Rantala I, Pasternack A, Mustonen J (2005) Uric acid correlates with the severity of histopathological parameters in IgA nephropathy. Nephrol Dial Transplant 20(1):89–95

    Article  PubMed  Google Scholar 

  42. Basar N, Sen N, Ozcan F, Erden G, Kanat S, Sokmen E, Isleyen A, Yuzgecer H, Ozlu MF, Yildirimkaya M, Maden O, Covic A, Johnson RJ, Kanbay M (2011) Elevated serum uric acid predicts angiographic impaired reperfusion and 1-year mortality in ST-segment elevation myocardial infarction patients undergoing percutaneous coronary intervention. J Investig Med 59(6):931–937. doi:10.231/JIM.0b013e318214ebaf

    PubMed  CAS  Google Scholar 

  43. Kanbay M, Sanchez-Lozada LG, Franco M, Madero M, Solak Y, Rodriguez-Iturbe B, Covic A, Johnson RJ (2011) Microvascular disease and its role in the brain and cardiovascular system: a potential role for uric acid as a cardiorenal toxin. Nephrol Dial Transplant 26(2):430–437. doi:10.1093/ndt/gfq635

    Article  PubMed  CAS  Google Scholar 

  44. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, Ishimoto T, Sautin YY, Lanaspa MA (2013) Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62(10):3307–3315. doi:10.2337/db12-1814

    Article  PubMed  CAS  Google Scholar 

  45. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS (2003) Regression of microalbuminuria in type 1 diabetes. N Engl J Med 348(23):2285–2293. doi:10.1056/NEJMoa021835

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this study was provided by NHLBI Grant R01 HL61753, HL79611, and HL113029, JDRF Grant 17-2013-313, and DERC Clinical Investigation Core P30 DK57516. The study was performed at the Adult CTRC at UCD support by NIH-M01-RR00051, at the Barbara Davis Center for Childhood Diabetes and at Colorado Heart Imaging Center in Denver, CO. Dr. Maahs was supported by a Grant from NIDDK (DK075360), Dr. Snell-Bergeon by an American Diabetes Association Junior Faculty Award (1-10-JF-50) and an American Diabetes Association Career Development Award (7-13-CD-10). Drs. Petter Bjornstad and Janet K. Snell-Bergeon are guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of interest

RJJ has patent applications related to the lowering of uric acid and or blocking fructose metabolism as a means for slowing diabetic nephropathy or improving insulin resistance, and has shares with XORT Therapeutics related to these patents. Drs. Bjornstad, Snell-Bergeon and Maahs have no conflict of interest to disclose.

Human and animal rights disclosure

The study was approved by the Colorado Multiple Institutional Review Board and therefore performed in accordance with the ethical standards laid down in appropriate versions of the 1964 Declaration of Helsinki.

Informed consent disclosure

All participants provided informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Bjornstad.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjornstad, P., Maahs, D.M., Rivard, C.J. et al. Serum uric acid predicts vascular complications in adults with type 1 diabetes: the coronary artery calcification in type 1 diabetes study. Acta Diabetol 51, 783–791 (2014). https://doi.org/10.1007/s00592-014-0611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0611-1

Keywords

Navigation