Acta Diabetologica

, Volume 50, Issue 6, pp 899–906 | Cite as

The MDM2 inhibitor Nutlin-3 attenuates streptozotocin-induced diabetes mellitus and increases serum level of IL-12p40

  • Paola Secchiero
  • Barbara Toffoli
  • Elisabetta Melloni
  • Chiara Agnoletto
  • Lorenzo Monasta
  • Giorgio ZauliEmail author
Original Article


Besides its well-established oncosuppressor activity, a key function of p53 in regulating metabolic pathways has been recently identified. Nevertheless, the role of p53 with respect to diabetes mellitus (DM) appears highly controversial. To address this issue, we have used the cis-imidazoline compound Nutlin-3, an inhibitor of MDM2/p53 interaction, which represents a potent and selective non-genotoxic activator of the p53 pathway both in in vivo and in vitro experimental settings. Experimental DM was induced by intraperitoneal injections of low concentrations of streptozotocin (STZ) in C57BL/6N mice (n = 20). A group of control vehicle-injected mice (n = 10) and of STZ-treated mice (n = 10) was co-injected with Nutlin-3. Mice co-injected with STZ + Nutlin-3 exhibited attenuated features of DM with respect to animals treated with STZ alone. Indeed, STZ + Nutlin-3-treated mice were characterized by significantly (p < 0.05) lower levels of hyperglycemia, reduced weight loss, and increased spleen weight. In addition, STZ alone promoted a marked decrease in the levels of several circulating cytokines, including interleukin-12 (IL-12)p40. On the other hand, co-injection of STZ + Nutlin-3 significantly (p < 0.01) counteracted IL-12p40 down-modulation. In vitro experiments performed on the RAW264.7 macrophagic cell line model, used as cellular source of IL-12p40, demonstrated that Nutlin-3 treatment increased IL-12p40 release, strongly suggesting a direct effect of Nutlin-3 on the immune system. Overall, these data demonstrate that systemic administration of Nutlin-3 ameliorates the severity of STZ-induced DM and increases the levels of circulating IL-12p40.


Nutlin-3 Diabetes mellitus Serum cytokines IL-12p40 



This work was supported by the grants from the Italian Ministry of Health to the IRCCS “Burlo Garofolo” of Trieste and by Italian Association for Cancer Research (AIRC) grant (IG 11465 to G. Zauli) and FIRB-MIUR grant (to G. Zauli). Chiara Agnoletto has been supported by a “Consorzio Spinner PhD Program.” We are extremely grateful to Riccardo Candido, M.D., PhD (Diabetological Centre ASS1 Trieste, Trieste, Italy), for the revision of the manuscript.

Conflict of interest

The authors have no conflicts of interest.


  1. 1.
    Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700PubMedCrossRefGoogle Scholar
  2. 2.
    Cunha DA, Igoillo-Esteve M, Gurzov EN, Germano CM, Naamane N, Marhfour I, Fukaya M, Vanderwinden JM, Gysemans C, Mathieu C, Marselli L, Marchetti P, Harding HP, Ron D, Eizirik DL, Cnop M (2012) Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human β-cell apoptosis. Diabetes 61:2763–2775PubMedCrossRefGoogle Scholar
  3. 3.
    Wu J, Kakoola DN, Lenchik NI, Desiderio DM, Marshall DR, Gerling IC (2012) Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes. PLoS ONE 7:e46941PubMedCrossRefGoogle Scholar
  4. 4.
    Zheng SJ, Lamhamedi-Cherradi SE, Wang P, Xu L, Chen YH (2005) Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 54:1423–1428PubMedCrossRefGoogle Scholar
  5. 5.
    Armata HL, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK (2010) Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 30:5787–5794PubMedCrossRefGoogle Scholar
  6. 6.
    Franck D, Tracy L, Armata HL, Delaney CL, Jung DY, Ko HJ, Ong H, Kim JK, Scrable HK (2012) Glucose tolerance in mice is linked to the dose of the p53 transactivation domain. Endocr Res (Epub ahead of print)Google Scholar
  7. 7.
    Burgdorf KS, Grarup N, Justesen JM, Harder MN, Witte DR, Jørgensen T, Sandbæk A, Lauritzen T, Madsbad S, Hansen T (2011) DIAGRAM Consortium, Pedersen O. Studies of the association of Arg72Pro of tumor suppressor protein p53 with type 2 diabetes in a combined analysis of 55,521 Europeans. PLoS ONE 6:e15813PubMedCrossRefGoogle Scholar
  8. 8.
    Bonfigli AR, Sirolla C, Testa R, Cucchi M, Spazzafumo L, Salvioli S, Ceriello A, Olivieri F, Festa R, Procopio AD, Brandoni G, Boemi M, Marra M, Franceschi C (2012) The p53 codon 72 (Arg72Pro) polymorphism is associated with the degree of insulin resistance in type 2 diabetic subjects: a cross-sectional study. Acta Diabetol (Epub ahead of print)Google Scholar
  9. 9.
    Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848PubMedCrossRefGoogle Scholar
  10. 10.
    Secchiero P, di Iasio MG, Gonelli A, Zauli G (2008) The MDM2 inhibitor Nutlins as an innovative therapeutic tool for the treatment of haematological malignancies. Curr Pharm Des 14:2100–2110PubMedCrossRefGoogle Scholar
  11. 11.
    Secchiero P, Bosco R, Celeghini C, Zauli G (2011) Recent advances in the therapeutic perspectives of Nutlin-3. Curr Pharm Des 17:569–577PubMedCrossRefGoogle Scholar
  12. 12.
    Allam R, Sayyed SG, Kulkarni OP, Lichtnekert J, Anders HJ (2011) Mdm2 promotes systemic lupus erythematosus and lupus nephritis. J Am Soc Nephrol 22:2016–2027PubMedCrossRefGoogle Scholar
  13. 13.
    Hashimoto T, Ichiki T, Ikeda J, Narabayashi E, Matsuura H, Miyazaki R, Inanaga K, Takeda K, Sunagawa K (2011) Inhibition of MDM2 attenuates neointimal hyperplasia via suppression of vascular proliferation and inflammation. Cardiovasc Res 91:711–719PubMedCrossRefGoogle Scholar
  14. 14.
    Mulay SR, Thomasova D, Ryu M, Anders HJ (2012) MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney Int 81:1199–1211PubMedCrossRefGoogle Scholar
  15. 15.
    Zauli G, Toffoli B, di Iasio MG, Celeghini C, Fabris B, Secchiero P (2010) Treatment with recombinant tumor necrosis factor-related apoptosis-inducing ligand alleviates the severity of streptozotocin-induced diabetes. Diabetes 59:1261–1265PubMedCrossRefGoogle Scholar
  16. 16.
    Boonyatecha N, Sangphech N, Wongchana W, Kueanjinda P, Palaga T (2012) Involvement of Notch signaling pathway in regulating IL-12 expression via c-Rel in activated macrophages. Mol Immunol 51:255–262PubMedCrossRefGoogle Scholar
  17. 17.
    Secchiero P, Zerbinati C, Melloni E, Milani D, Campioni D, Fadda R, Tiribelli M, Zauli G (2007) The MDM-2 antagonist Nutlin-3 promotes maturation of acute myeloid leukemic blasts. Neoplasia 9:853–861PubMedCrossRefGoogle Scholar
  18. 18.
    Secchiero P, Melloni E, di Iasio MG, Tiribelli M, Rimondi E, Corallini F, Gattei V, Zauli G (2009) Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 113:4300–4308PubMedCrossRefGoogle Scholar
  19. 19.
    Vitale M, Zamai L, Falcieri E, Zauli G, Gobbi P, Santi S, Cinti C, Weber G (1997) IMP dehydrogenase inhibitor, tiazofurin, induces apoptosis in K562 human erythroleukemia cells. Cytometry Part B-Clinical Cytometry 30:61–66CrossRefGoogle Scholar
  20. 20.
    Campioni D, Secchiero P, Corallini F, Melloni E, Capitani S, Lanza F, Zauli G (2005) Evidence for a role of TNF-related apoptosis-inducing ligand (TRAIL) in the anemia of myelodysplastic syndromes. Am J Pathol 166:557–563PubMedCrossRefGoogle Scholar
  21. 21.
    Campioni D, Corallini A, Zauli G, Possati L, Altavilla G, Barbanti-Brodano G (1995) HIV type 1 extracellular tat protein stimulates growth and protects cells of BK virus/tat transgenic mice from apoptosis. AIDS Res Hu Retro 11:1039–1048CrossRefGoogle Scholar
  22. 22.
    Zauli G, La Placa M, Vignoli M, Re MC, Gibellini D, Furlini G, Milani D, Marchisio M, Mazzoni M, Capitani S (1995) An autocrine loop of HIV type-1 Tat protein responsible for the improved survival/proliferation capacity of permanently tat-transfected cells and required for optimal HIV-1 LTR transactivating activity. J Acquir Immune Defic Syndr Hum Retrovirol 10:306–316PubMedCrossRefGoogle Scholar
  23. 23.
    McCall KD, Holliday D, Dickerson E, Wallace B, Schwartz AL, Schwartz C, Lewis CJ, Kohn LD, Schwartz FL (2010) Phenylmethimazole blocks palmitate-mediated induction of inflammatory cytokine pathways in 3T3L1 adipocytes and RAW 264.7 macrophages. J Endocrinol 207:343–345PubMedCrossRefGoogle Scholar
  24. 24.
    Yin D, Tao J, Lee DD, Shen J, Hara M, Lopez J, Kuznetsov A, Philipson LH, Chong AS (2006) Recovery of islet beta-cell function in streptozotocin- induced diabetic mice: an indirect role for the spleen. Diabetes 55:3256–3263PubMedCrossRefGoogle Scholar
  25. 25.
    Govil S, Imrie CW (1999) Value of splenic preservation during distal pancreatectomy for chronic pancreatitis. Br J Surg 86:895–898PubMedCrossRefGoogle Scholar
  26. 26.
    Tsiavou A, Degiannis D, Hatziagelaki E, Koniavitou K, Raptis SA (2004) Intracellular IFN-gamma production and IL-12 serum levels in latent autoimmune diabetes of adults (LADA) and in type 2 diabetes. J Interferon Cytokine Res 24:381–388PubMedCrossRefGoogle Scholar
  27. 27.
    Wu HP, Kuo SF, Wu SY, Chuang DY (2010) High interleukin-12 production from stimulated peripheral blood mononuclear cells of type 2 diabetes patients. Cytokine 51:298–304PubMedCrossRefGoogle Scholar
  28. 28.
    Mishra M, Kumar H, Bajpai S, Singh RK, Tripathi K (2011) Level of serum IL-12 and its correlation with endothelial dysfunction, insulin resistance, proinflammatory cytokines and lipid profile in newly diagnosed type 2 diabetes. Diabetes Res Clin Pract 94:255–261PubMedCrossRefGoogle Scholar
  29. 29.
    Amirshahrokhi K, Ghazi-Khansari M (2012) Thalidomide attenuates multiple low-dose streptozotocin-induced diabetes in mice by inhibition of proinflammatory cytokines. Cytokine 60:522–527PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor-Fishwick DA, Weaver JR, Grzesik W, Chakrabarti S, Green-Mitchell S, Imai Y, Kuhn N, Nadler JL (2013) Production and function of IL-12 in islets and beta cells. Diabetologia 56(1):126–135PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang J, Huang Z, Sun R, Tian Z, Wei H (2012) IFN-γ induced by IL-12 administration prevents diabetes by inhibiting pathogenic IL-17 production in NOD mice. J Autoimmun 38:20–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Paola Secchiero
    • 1
  • Barbara Toffoli
    • 2
  • Elisabetta Melloni
    • 1
  • Chiara Agnoletto
    • 1
  • Lorenzo Monasta
    • 2
  • Giorgio Zauli
    • 2
    Email author
  1. 1.Department of Morphology, Surgery and Experimental Medicine and LTTA CentreUniversity of FerraraFerraraItaly
  2. 2.Institute for Maternal and Child HealthIRCCS “Burlo Garofolo”TriesteItaly

Personalised recommendations