Skip to main content

Advertisement

Log in

Lipid accumulation in overweight type 2 diabetic subjects: relationships with insulin sensitivity and adipokines

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Adipokines are known to play a fundamental role in the etiology of obesity, that is, in the impaired balance between increased feeding and decreased energy expenditure. While the adipokine-induced changes of insulin resistance in obese diabetic and nondiabetic subjects are well known, the possible role of fat source in modulating insulin sensitivity (IS) remains controversial. The aim of our study was to explore in overweight type 2 diabetic patients (T2DM) with metabolic syndrome IS in different energy storage conditions (basal and dynamic) for relating it to leptin and adiponectin. Sixteen T2DM (5/11 F/M; 59 ± 2 years; 29.5 ± 1.1 kg/m2) and 16 control (CNT 5/11; 54 ± 2; 29.1 ± 1.0) underwent an oral glucose tolerance test. Fasting IS was measured by QUICKI, while the dynamic one with OGIS. The insulinogenic index (IGI) described beta cell function. Also, the lipid accumulation product parameter (LAP) was assessed. LAP accounts for visceral abdominal fat and triglycerides, and it is known to be related to IS. Possible interrelationships between LAP and adipokines were explored. In T2DM and CNT, adiponectin (7.4 ± 0.5 vs. 7.8 ± 0.9 μg/mL), leptin (13.3 ± 3.0 vs. 12.4 ± 2.6 ng/mL), and QUICKI (0.33 ± 0.01 vs. 0.33 ± 0.01) were not different (P > 0.40), at variance with OGIS (317 ± 11 vs. 406 ± 13 mL/min/m2; P = 0.006) and IGI (0.029 ± 0.005 vs. 0.185 ± 0.029 × 103 pmolI/mmolG; P = 0.00001). LAP was 85 ± 15 cm × mg/dL in T2DM and 74 ± 10 in CNT (P > 0.1), correlated with OGIS in all subjects (R = −0.42, P = 0.02) and QUICKI (R = −0.56, P = 0.025) in T2DM. Leptin correlated with QUICKI (R = −0.45, P = 0.009), and adiponectin correlated with OGIS (R = 0.43, P = 0.015). In overweight T2DM, insulin sensitivity in basal condition appears to be multifaceted with respect to the dynamic one, because it should be more fat-related. Insulin sensitivity appears to be incompletely described by functions of fasting glucose and insulin values alone and the use of other indices, such as LAP could be suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  PubMed  CAS  Google Scholar 

  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) Executive summary of the third report of the national cholesterol in adults (NCEP). JAMA 285:2486–2497

    Google Scholar 

  3. Alberti KG, Zimmet P, Shaw J for IDF Epidemiology Task Force Consensus Group (2005) The metabolic syndrome: a new worldwide definition. Lancet 366:1059–1062

    Google Scholar 

  4. Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association. Circulation 109:433–438

    Article  PubMed  Google Scholar 

  5. Grundy SM, Cleeman JI, Daniels SR (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  6. Khan R, Buse J, Ferrannini E, Stem M (2005) The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28:2289–2304

    Article  Google Scholar 

  7. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA 31:12587–12594

    Article  Google Scholar 

  8. McAteer JB, Prudente S, Bacci S, Lyon HN, Hirschhom JN, Trischitta V, Florez JC for the ENPP1 Consortium (2008) The ENPP1 K121Q polymorphism is associated with T2DM in European population. Diabetes 57:1125–1130

    Google Scholar 

  9. Dyck DJ, Heigenhauser GJF, Bruce CR (2006) The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol 186:5–16

    Article  CAS  Google Scholar 

  10. Yudkin JS (2005) Vasocrine signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365:1817–1830

    Article  PubMed  Google Scholar 

  11. Shimizu H, Inoue K, Mori M (2007) The leptin-dependent and-independent melanocortin signaling system regulation of feeding and energy expenditure. J Endocrinol 193:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Arner P (2005) Insulin resistance in type 2 diabetes—role of adipokines. Curr Mol Med 5:333–339

    Article  PubMed  CAS  Google Scholar 

  13. Shuldiner AR, Yang R, Gong DW (2001) Resistin, obesity, and insulin resistance—the emerging role of the adipocyte as an endocrine organ. N Engl J Med 345:1345–1346

    Article  PubMed  CAS  Google Scholar 

  14. Silha JV, Krsek M, Skrha MJV, Sucharda P, Nyomba GLG, Murphy LJ (2003) Plasma resistin, adiponectin and leptin level in lean and obese subjects. Correlation with insulin resistance. Eur J Endocrinol 149:331–335

    Article  PubMed  CAS  Google Scholar 

  15. Perseghin G, Lattuada G, De Cobelli F, Esposito A, Belloni E, Canu T, Ragogna F, Scifo P, Del Maschio A, Luzi L (2007) Serum retinol-binding-4 leptin, and adiponectin concentrations are related to ectopic fat accumulation. J Clin Endocrinol Metab 92:4883–4888

    Article  PubMed  CAS  Google Scholar 

  16. Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14:741–751

    Article  PubMed  CAS  Google Scholar 

  17. Hroussalas G, Kassi E, Dalamaga M, Delimaris I, Zachari A, Dionyssiou-Asteriou A (2008) Leptin, soluble leptin receptor, adiponectin and resistin in relation to OGTT in overweight/obese postmenopausal women. Maturitas 59:339–349

    Article  PubMed  CAS  Google Scholar 

  18. Kahn SH (2005) The “lipid accumulation product’’ performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5:26

    Article  PubMed  Google Scholar 

  19. Kahn SH (2006) The lipid accumulation product is better than the body mass index for identifying diabetes. Diabetes Care 29:151–153

    Article  PubMed  Google Scholar 

  20. Stein A, Myers GL (1994) Tietz textbook of clinical chemistry, 2nd edn. Saunders, New York

    Google Scholar 

  21. Perseghin G (2006) Serum resistin and hepatic fat content in nondiabetic individuals. J Clin Endocrinol Metab 91:5122–5125

    Article  PubMed  CAS  Google Scholar 

  22. Perseghin G (2001) Gender factors affect fatty acids-induced insulin resistance in nonobese humans: effects of oral steroidal contraception. J Clin Endocrinol Metab 86:3188–3196

    Article  PubMed  CAS  Google Scholar 

  23. Koenig W, Sund M, Fröhlich M, Fischer HG, Lo H, Doring A, Hutchinson WL, Pepys MB for MONICA-Augsburg Cohort Study (1999). CRP, a sensitive marker for inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Circulation 99:237–42

    Google Scholar 

  24. Balkau B, Deanfield JE, Despres JP, Bassand GP, Fox AAK, Smith SC Jr, Tan CE, Van Gal L, Wittchen HU, Massien C, Haffner SM (2007) International day for the evaluation of abdominal obesity (IDEA) study of waist circumference, cardiovascular disease, and diabetes mellitus in 168000 primary care patients in 63 countries. Circulation 116:1942–1951

    Article  PubMed  Google Scholar 

  25. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410

    Article  PubMed  CAS  Google Scholar 

  26. Abdul-Ghani MA, Matsuda M, Balas B, De Fronzo RA (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30:89–94

    Article  PubMed  CAS  Google Scholar 

  27. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ (2001) A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 24:539–548

    Article  PubMed  CAS  Google Scholar 

  28. Sambataro M, Maioli M, Tonolo G, Stenhower CDA, van Hinsbergh VWM, Piarulli F, Nosadini R, Pacini G (2002) Insulin sensitivity correlates with glycogen synthesis rate, but not with von Willebrand factor in type 2 diabetes. Eur J Int Med 13:439–444

    Article  CAS  Google Scholar 

  29. Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, De Fronzo RA (2006) Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance. Diabetes 55:1430–1435

    Article  PubMed  CAS  Google Scholar 

  30. Abdul–Ghani MA, Tripathy D, De Fronzo RA (2006) Contributions of cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29:1130–1139

    Article  PubMed  Google Scholar 

  31. Abdul-Ghani MA, Matsuda M, DeFronzo RA (2008) Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects. Diabet Med 25:1289–1294

    PubMed  CAS  Google Scholar 

  32. Tura A, Kautzky-Willer A, Pacini G (2006) Insulinogenic indices from insulin, C-peptide: comparison of beta-cell function from OGTT, IVGTT. Diabetes Res Clin Pract 72:298–301

    Article  PubMed  CAS  Google Scholar 

  33. de Piano A, Tock L, Carnier J, Oyama LM, Oller do Nascimento CM, Martinz AC, Foschini D, Sanches PL, Ernandes RM, de Mello MT, Tufik S, Dâmaso AR (2010) Negative correlation between neuropeptide Y/agouti-related protein concentration and adiponectinemia in nonalcoholic fatty liver disease obese adolescents submitted to a long-term interdisciplinary therapy. Metabolism 59:613–619

    Article  PubMed  Google Scholar 

  34. Meyer C, Pimenta W, Woerle HJ, Van Haeften T, Szoke E, Mitrakou A, Gerich J (2006) Different mechanism for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 29:1909–1914

    Article  PubMed  CAS  Google Scholar 

  35. Snijder MB, Dekker MJ, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, Heine RJ, Nijpels G, Seidell JC (2004) Hoorn study. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels. Diabetes Care 27:372–377

    Article  PubMed  Google Scholar 

  36. Snijder MB, Flyvbjerg A, Stehouwer CDA, Frystyk J, Henry RM, Seidell JC, Heine RJ, Dekker JM (2009) Relationship of adiposity with arterial stiffness as mediated by adiponectin in older man and women: the Hoorn Study. Eur J Endocrinol 160:87–95

    Google Scholar 

  37. Finucane FM, Luan J, Wareham NJ, Sharp SJ, O’Rahilly S, Balkau B, Flyvbjerg A, Walker M, Højlund K, Nolan JJ, Savage DB (2009) Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals. Diabetologia 52:2345–2349

    Article  PubMed  CAS  Google Scholar 

  38. Inoue M, Maehata E, Yano-Mtaniyama M, Suzuki S (2005) Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type two diabetes. Metabolism 54:281–286

    Article  PubMed  CAS  Google Scholar 

  39. Avogaro A, Sambataro M, Marangoni A, Pianta A, Vettor R, Pagano C, Marescotti MC, Tiengo A, Beltramello G (2003) Moderate alcohol consumption, glucose metabolism and lipolysis: the effect on adiponectin and tumor necrosis factor alpha. J Endocrinol Invest 26:1213–1218

    PubMed  CAS  Google Scholar 

  40. Giorgino F, Laviola L, Eriksson JW (2005) Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 183:13–30

    Article  PubMed  CAS  Google Scholar 

  41. Giorgino F, Laviola L, Leonardini A (2005) Pathophysiology of T2DM: rationale for different oral antidiabetic treatment strategies. Diabetes Res Clin Pract 68:S22–S29

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Gino Alberto Giudici of Sanofi–Aventis S.p.A. Italia, for providing the data of the IDEA study, granting us the permission of reporting some of unpublished results and for useful discussions.

Conflict of interest

The authors declare no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sambataro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambataro, M., Perseghin, G., Lattuada, G. et al. Lipid accumulation in overweight type 2 diabetic subjects: relationships with insulin sensitivity and adipokines. Acta Diabetol 50, 301–307 (2013). https://doi.org/10.1007/s00592-011-0366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0366-x

Keywords

Navigation