Advertisement

Acta Diabetologica

, Volume 49, Issue 3, pp 167–183 | Cite as

The potential role of glutamate in the current diabetes epidemic

  • Alberto M. Davalli
  • Carla Perego
  • Franco B. Folli
Review Article

Abstract

In the present article, we propose the perspective that abnormal glutamate homeostasis might contribute to diabetes pathogenesis. Previous reports and our recent data indicate that chronically high extracellular glutamate levels exert direct and indirect effects that might participate in the progressive loss of β-cells occurring in both T1D and T2D. In addition, abnormal glutamate homeostasis may impact all the three accelerators of the “accelerator hypothesis” and could partially explain the rising frequency of T1D and T2D.

Keywords

l-Glutamic acid Glutamate toxicity Monosodium glutamate Obesity Diabetes Pancreatic β-cells 

Notes

Acknowledgments

This work was supported by University Research Program 2008 (to CP) and National Institutes of Health Grant RO1 DK080148 (to FF). AMD, CP, and FF and Eliana Sara di Cairano (ESDC) are inventors in a Patent Cooperation Treaty application (PCT/EP09/08256, US2011/0244486A1).

References

  1. 1.
    Gale EA (2009) The rise of childhood type 1 diabetes in the 20th century. Diabetes 51(12):3353–3361CrossRefGoogle Scholar
  2. 2.
    Harjutsalo V, Sjöberg L, Tuomilehto J (2008) Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371(9626):1777–1782PubMedCrossRefGoogle Scholar
  3. 3.
    Karvonen M, Pitkaniemi J, Tuomilehto J (1999) The onset age of type 1 diabetes in Finnish children has become younger. The Finnish childhood diabetes registry group. Diabetes Care 22(7):1066–1070Google Scholar
  4. 4.
    Kitagawa T, Owada M, Urakami T, Yamauchi K (1998) Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin Pediatr (Phila) 37(2):111–115CrossRefGoogle Scholar
  5. 5.
    Dabelea D, DeGroat J, Sorrelman C, Glass M, Percy CA, Avery C, Hu D, D’Agostino RB Jr, Beyer J, Imperatore G, Testaverde L, Klingensmith G, Hamman RF; SEARCH for Diabetes in Youth Study Group (2009) Diabetes in Navajo youth: prevalence, incidence, and clinical characteristics: the SEARCH for Diabetes in Youth Study. Diabetes Care 32(suppl 2):S141–147Google Scholar
  6. 6.
    Braun B, Zimmermann MB, Kretchmer N, Spargo RM, Smith RM, Gracey M (1999) Risk factors for diabetes and cardiovascular disease in young Australian aborigines. A 5-year follow-up study. Diabetes Care 19(5):472–479Google Scholar
  7. 7.
    Drake AJ, Smith A, Betts PR, Crowne EC, Shield JP (2002) Type 2 diabetes in obese white children. Arch Dis Child 86(3):207–208PubMedCrossRefGoogle Scholar
  8. 8.
    Gallwitz B, Kazda C, Kraus P, Nicolay C, Schernthaner G (2011) Contribution of insulin deficiency and insulin resistance to the development of type 2 diabetes: nature of early stage diabetes. Acta Diabetol Aug 23 [Epub ahead of print] PubMed PMID: 21861172Google Scholar
  9. 9.
    Carnevale Schianca GP, Colli E, Onolfo S, Pedrazzoli R, Fra GP, Bartoli E (2010) Individuation of different metabolic phenotypes in normal glucose tolerance test. Acta Diabetol 47(2):167–172PubMedCrossRefGoogle Scholar
  10. 10.
    Kanat M, Norton L, Winnier D, Jenkinson C, DeFronzo RA, Abdul-Ghani MA (2011) Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol 48(3):209–217PubMedCrossRefGoogle Scholar
  11. 11.
    Mølbak AG, Christau B, Marner B, Borch-Johnsen K, Nerup J (1994) Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabet Med 11(7):650–655PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenbloom AL, Joe JR, Young RS, Winter WE (1999) Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22(2):345–354PubMedCrossRefGoogle Scholar
  13. 13.
    Aizawa T, Funase Y, Katakura M, Asanuma N, Yamauchi K, Yoshizawa K, Hashizume K (1997) Ketosis-onset diabetes in young adults with subsequent non-insulin-dependency, a link between IDDM and NIDDM? Diabet Med 14(11):989–991PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks-Worrell BM, Reichow JL, Goel A, Ismail H, Palmer JP (2011) Identification of autoantibody-negative autoimmune type 2 diabetic patients. Diabetes Care 34(1):168–173PubMedCrossRefGoogle Scholar
  15. 15.
    Turner R, Stratton I, Horton V, Manley S, Zimmet P, Mackay IR, Shattock M, Bottazzo GF, Holman R (1997) UKPDS 25: antibodies to islet cell and GAD for prediction of insulin requirement in type 2 diabetes. UK prospective diabetes study group. Lancet 350(9087):1288–1293PubMedCrossRefGoogle Scholar
  16. 16.
    Unnikrishnan AG, Singh SK, Sanjeevi CB (2004) Prevalence of GAD65 antibodies in lean subjects with type 2 diabetes. Ann NY Acad Sci 1037:118–121PubMedCrossRefGoogle Scholar
  17. 17.
    Hathout EH, Thomas W, El-Shahawy M, Nahab F, Mace JW (2001) Diabetic autoimmune markers in children and adolescents with type 2 diabetes. Pediatrics 107:E102PubMedCrossRefGoogle Scholar
  18. 18.
    Umpaichitra V, Banerji MA, Castells S (2002) Autoantibodies in children with type 2 diabetes mellitus. J Pediatr Endocrinol Metab 15:525–530PubMedGoogle Scholar
  19. 19.
    Hypponen E, Virtanen SM, Kenward MG, Knip M, Akerblom HK (2000) Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care 23(12):1755–1760PubMedCrossRefGoogle Scholar
  20. 20.
    Libman IM, Pietropaolo M, Arslanian SA, LaPorte RE, Becker DJ (2003) Changing prevalence of overweight children and adolescents at onset of insulin-treated diabetes. Diabetes Care 26(10):2871–2875PubMedCrossRefGoogle Scholar
  21. 21.
    Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC (2004) Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47(10):1661–1667PubMedCrossRefGoogle Scholar
  22. 22.
    Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107PubMedCrossRefGoogle Scholar
  23. 23.
    Wang AP, Li X, Zheng Y, Liu BL, Huang G, Yan X, Liu Z, Zhou Z. (2010) Thiazolidinediones protect mouse pancreatic beta-cells directly from cytokine-induced cytotoxicity through PPAR-gamma-dependent mechanisms. Acta Diabetol Dec 10 [Epub ahead of print] PubMed PMID: 21153483Google Scholar
  24. 24.
    Mandrup-Poulsen T, Zumsteg U, Reimers J, Pociot F, Mørch L, Helqvist S, Dinarello CA, Nerup J (1993) Involvement of interleukin 1 and interleukin 1 antagonist in pancreatic beta-cell destruction in insulin-dependent diabetes mellitus. Cytokine 5(3):185–191PubMedCrossRefGoogle Scholar
  25. 25.
    Pickersgill LM, Mandrup-Poulsen TR (2009) The anti-interleukin-1 in type 1 diabetes action trial–background and rationale. Diabetes Metab Res Rev 25(4):321–324PubMedCrossRefGoogle Scholar
  26. 26.
    Sanda S, Bollyky J, Standifer N, Nepom G, Hamerman JA, Greenbaum C (2010) Short-term IL-1beta blockade reduces monocyte CD11b integrin expression in an IL-8 dependent fashion in patients with type 1 diabetes. Clin Immunol 136(2):170–173PubMedCrossRefGoogle Scholar
  27. 27.
    Sumpter KM, Adhikari S, Grishman EK, White PC (2011) Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes 12(7):656–667PubMedCrossRefGoogle Scholar
  28. 28.
    Wilkin TJ (2001) The Accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes. Diabetologia 44(7):914–922PubMedCrossRefGoogle Scholar
  29. 29.
    Raha O, Chowdhury S, Dasgupta S, Raychaudhuri P, Sarkar BN, Raju PV, Rao VR (2009) Approaches in type 1 diabetes research: a status report. Int J Diabetes Dev Ctries 29(2):85–101PubMedCrossRefGoogle Scholar
  30. 30.
    Blachier F, Boutry C, Bos C, Tomé D (2009) Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90(3):814S–821SPubMedCrossRefGoogle Scholar
  31. 31.
    Matthews DE, Marano MA, Campbell RG (1993) Splanchnic bed utilization of glutamine and glutamic acid in humans. Am J Physiol 264(6):E848–E854PubMedGoogle Scholar
  32. 32.
    Solimena M, Folli F, Denis-Donini S, Comi GC, Pozza G, De Camilli P, Vicari AM (1998) Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N Engl J Med 318(16):1012–1020CrossRefGoogle Scholar
  33. 33.
    Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, Folli F, Richter-Olesen H, De Camilli P (1990) Identification of the 64 K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347(6289):151–156PubMedCrossRefGoogle Scholar
  34. 34.
    Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P (1991) GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10(5):1275–1284PubMedGoogle Scholar
  35. 35.
    MacMullen C, Fang J, Hsu BY, Kelly A, de Lonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA (2001) Hyperinsulinism/hyperammonemia contributing Investigators Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 86(4):1782–1787PubMedCrossRefGoogle Scholar
  36. 36.
    Maechler P, Wollheim CB (1999) Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402(6762):685–689PubMedCrossRefGoogle Scholar
  37. 37.
    Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542PubMedCrossRefGoogle Scholar
  38. 38.
    Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 63(1):35–58PubMedCrossRefGoogle Scholar
  39. 39.
    Guemez-Gamboa A, Estrada-Sánchez AM, Montiel T, Páramo B, Massieu L, Morán J (2011) Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. J Neuropathol Exp Neurol 70(11):1020–1035PubMedCrossRefGoogle Scholar
  40. 40.
    Hawkins RA (2009) The blood-brain barrier and glutamate. Am J Clin Nutr 90(3):867S–874SPubMedCrossRefGoogle Scholar
  41. 41.
    Bertrand G, Gross R, Puech R, Loubatières-Mariani MM, Bockaert J (1992) Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br J Pharmacol 106(2):354–359Google Scholar
  42. 42.
    Bertrand G, Gross R, Puech R, Loubatières-Mariani MM, Bockaert J (1993) Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. Eur J Pharmacol 237(1):45–50PubMedCrossRefGoogle Scholar
  43. 43.
    Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, Miyazaki J, Seino S (1994) Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem 269(25):16989–16992PubMedGoogle Scholar
  44. 44.
    Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, Kaneko T, Iwanaga T, Seino S (1995) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9(8):686–691PubMedGoogle Scholar
  45. 45.
    Weaver CD, Yao TL, Powers AC, Verdoorn TA (1996) Differential expression of glutamate receptor subtypes in rat pancreatic islets. J Biol Chem 271(22):12977–12984PubMedCrossRefGoogle Scholar
  46. 46.
    Weaver CD, Gundersen V, Verdoorn TA (1998) A high affinity glutamate/aspartate transport system in pancreatic islets of Langerhans modulates glucose-stimulated insulin secretion. J Biol Chem 273(3):1647–1653PubMedCrossRefGoogle Scholar
  47. 47.
    Brice NL, Varadi A, Ashcroft SJ, Molnar E (2002) Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia 45(2):242–252PubMedCrossRefGoogle Scholar
  48. 48.
    Tong Q, Ouedraogo R, Kirchgessner AL (2002) Localization and function of group III metabotropic glutamate receptors in rat pancreatic islets. Metab 282(6):E1324–E1333Google Scholar
  49. 49.
    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105PubMedCrossRefGoogle Scholar
  50. 50.
    Lerner J (1987) Acidic amino acid transport in animal cells and tissues. Comp Biochem Physiol B 87(3):443–457PubMedCrossRefGoogle Scholar
  51. 51.
    Moe AJ (1995) Placental amino acid transport. Am J Physiol 268(6):C1321–C1331PubMedGoogle Scholar
  52. 52.
    Schneider H, Möhlen KH, Dancis J (1979) Transfer of amino acids across the in vitro perfused human placenta. Pediatr Res 13(4):236–240PubMedCrossRefGoogle Scholar
  53. 53.
    Johanson CE (1980) Permeability and vascularity of the developing brain: cerebellum vs cerebral cortex. Brain Res 190(1):3–16PubMedCrossRefGoogle Scholar
  54. 54.
    Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20(1):57–76PubMedCrossRefGoogle Scholar
  55. 55.
    Hermanussen M, Tresguerres JA (2003) Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. J Perinat Med 31(6):489–495PubMedCrossRefGoogle Scholar
  56. 56.
    Faus O, López Morales J, Faus MJ, Periago JL, Bueno Sánchez A, Gil A, Martínez Valverde A (1984) Free amino acid content of human milk in Spain. An Esp Pediatr 21(6):557–563PubMedGoogle Scholar
  57. 57.
    Agostoni C, Carratù B, Boniglia C, Lammardo AM, Riva E, Sanzini E (2000) Free glutamine and glutamic acid increase in human milk through a three-month lactation period. J Pediatr Gastroenterol Nutr 31(5):508–512PubMedCrossRefGoogle Scholar
  58. 58.
    Agostoni C, Carratù B, Boniglia C, Riva E, Sanzini E (2000) Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr 19(4):434–438PubMedGoogle Scholar
  59. 59.
    DeSantiago S, Ramírez I, Tovar AR, Alonso L, Ortíz-Olaya N, Torres N (1998) Free amino acids in plasma and milk of mexican rural lactating women. Rev Invest Clin 50(5):405–412PubMedGoogle Scholar
  60. 60.
    Villalpando S, Butte NF, Flores-Huerta S, Thotathuchery M (1998) Qualitative analysis of human milk produced by women consuming a maize-predominant diet typical of rural Mexico. Ann Nutr Metab 42(1):23–32PubMedCrossRefGoogle Scholar
  61. 61.
    Otabe S, Nakayama H, Fukutani T, Yuan X, Wada N, Hashinaga T, Mitsui A, Kato T, Inada C, Tajiri Y, Yamada K (2010) Excessive maternal transmission of diabetes in Japanese families with young-onset type 2 diabetes and insulin secretion defect according to clinical features. Acta Diabetol 47(suppl 1):133–138PubMedCrossRefGoogle Scholar
  62. 62.
    Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7(2):357–368PubMedGoogle Scholar
  63. 63.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686PubMedCrossRefGoogle Scholar
  64. 64.
    Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702PubMedCrossRefGoogle Scholar
  65. 65.
    Pizzi WJ, Barnhart JE (1976) Effects of monosodium glutamate on somatic development, obesity and activity in the mouse. Pharmacol Biochem Behav 5(5):551–557PubMedCrossRefGoogle Scholar
  66. 66.
    Iwase M, Yamamoto M, Iino K, Ichikawa K, Shinohara N, Yoshinari M, Fujishima M (1998) Obesity induced by neonatal monosodium glutamate treatment in spontaneously hypertensive rats: an animal model of multiple risk factors. Hypertens Res 21(1):1–6PubMedCrossRefGoogle Scholar
  67. 67.
    Roman-Ramos R, Almanza-Perez JC, Garcia-Macedo R, Blancas-Flores G, Fortis-Barrera A, Jasso EI, Garcia-Lorenzana M, Campos-Sepulveda AE, Cruz M, Alarcon-Aguilar FJ (2011) Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin Pharmacol Toxicol 108(6):406–413PubMedCrossRefGoogle Scholar
  68. 68.
    Sasaki Y, Suzuki W, Shimada T, Iizuka S, Nakamura S, Nagata M, Fujimoto M, Tsuneyama K, Hokao R, Miyamoto K, Aburada M (2009) Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci 85(13–14):490–498PubMedCrossRefGoogle Scholar
  69. 69.
    Islam MS, Loots du T (2009) Experimental rodent models of type 2 diabetes: a review. Methods Find Exp Clin Pharmacol 31(4):249–261PubMedGoogle Scholar
  70. 70.
    Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, Aburada M, Miyamoto K (2006) Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. K Exp Anim 55(2):109–115CrossRefGoogle Scholar
  71. 71.
    Anantharaman K (1972) In utero and dietary administration of monosodium l-glutamate to mice: reproductive performance and development in a multigeneration study. In: Filer LJ Jr, Garattini S, Kare MR, Reynolds WA, Wurtman RJ (eds) Glutamic acid: advances in biochemistry and physiology. New York, Raven PressGoogle Scholar
  72. 72.
    Heywood R, Worden AN (1972) Glutamate toxicity in laboratory animals. In: Filer LJ Jr, Garattini S, Kare MR, Reynolds WA, Wurtman RJ (eds) Glutamic acid: advances in biochemistry and physiology. New York, Raven PressGoogle Scholar
  73. 73.
    Hermanussen M, García AP, Sunder M, Voigt M, Salazar V, Tresguerres JA (2006) Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. Eur J Clin Nutr 60(1):25–31PubMedCrossRefGoogle Scholar
  74. 74.
    Monno A, Vezzani A, Bastone A, Salmona M, Garattini S (1995) Extracellular glutamate levels in the hypothalamus and hippocampus of rats after acute or chronic oral intake of monosodium glutamate. Neurosci Lett 193(1):45–48PubMedCrossRefGoogle Scholar
  75. 75.
    Cheunsuang O, Stewart AL, Morris R (2006) Differential uptake of molecules from the circulation and CSF reveals regional and cellular specialisation in CNS detection of homeostatic signals. Cell Tissue Res 325(2):397–402PubMedCrossRefGoogle Scholar
  76. 76.
    Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State retina research group. Diabetes 47(5):815–820Google Scholar
  77. 77.
    Kowluru RA, Engerman RL, Case GL, Kern TS (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390PubMedCrossRefGoogle Scholar
  78. 78.
    Yu X, Xu Z, Mi M, Xu H, Zhu J, Wei N, Chen K, Zhang Q, Zeng K, Wang J, Chen F, Tang Y (2008) Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats. Neurochem Res 33(3):500–507PubMedCrossRefGoogle Scholar
  79. 79.
    Zeng K, Xu H, Chen K, Zhu J, Zhou Y, Zhang Q, Mantian M (2010) Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. Mol Cell Neurosci 45(2):192–199PubMedCrossRefGoogle Scholar
  80. 80.
    Liu MT, Rothstein JD, Gershon MD, Kirchgessner AL (1997) Glutamatergic enteric neurons. J Neurosci 17(12):4764–4784PubMedGoogle Scholar
  81. 81.
    Kirchgessner AL, Liu MT, Alcantara F (1997) Excitotoxicity in the enteric nervous system. J Neurosci 17(22):8804–8816PubMedGoogle Scholar
  82. 82.
    von Boyen GB, Steinkamp M, Adler G, Kirsch J (2006) Glutamate receptor subunit expression in primary enteric glia cultures. J Recept Signal Transduct Res 26(4):329–336CrossRefGoogle Scholar
  83. 83.
    Nasser Y, Keenan CM, Ma AC, McCafferty DM, Sharkey KA (2007) Expression of a functional metabotropic glutamate receptor 5 on enteric glia is altered in states of inflammation. Glia 55(8):859–872PubMedCrossRefGoogle Scholar
  84. 84.
    Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22(6):631–647PubMedCrossRefGoogle Scholar
  85. 85.
    Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV (1998) Fulminant Jejuno-Ileitis following ablation of enteric glia in adult transgenic mice. Cell 93(2):189–201PubMedCrossRefGoogle Scholar
  86. 86.
    Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132(4):1344–1358PubMedCrossRefGoogle Scholar
  87. 87.
    Secondulfo M, Iafusco D, Carratù R, deMagistris L, Sapone A, Generoso M, Mezzogiomo A, Sasso FC, Cartenì M, De Rosa R, Prisco F, Esposito V (2004) Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type 1 diabetic patients. Dig Liver Dis 36(1):35–45Google Scholar
  88. 88.
    Westerholm-Ormio M, Vaarala O, Pihkala P, Ilonen J, Savilahti E (2003) Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52(9):2287–2295PubMedCrossRefGoogle Scholar
  89. 89.
    Savilahti E, Ormälä T, Saukkonen T, Sandini-Pohjavuori U, Kantele JM, Arato A, Ilonen J, Akerblom HK (1999) Jejuna of patients with insulin-dependent diabetes mellitus (IDDM) show signs of immune activation. Clin Exp Immunol 116(1):70–77PubMedCrossRefGoogle Scholar
  90. 90.
    Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity 35(5):365–368PubMedCrossRefGoogle Scholar
  91. 91.
    Bosi E, Molteni L, Radaelli MG, Folini L, Fermo I, Bazzigaluppi E, Piemonti L, Pastore MR, Paroni R (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49(12):2824–2827PubMedCrossRefGoogle Scholar
  92. 92.
    Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Cartenì M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55(5):1443–1449PubMedCrossRefGoogle Scholar
  93. 93.
    Graham S, Courtois P, Malaisse WJ, Rozing J, Scott FW, Mowat AM (2004) Enteropathy precedes type 1 diabetes in the BB rat. Gut 53(10):1437–1444PubMedCrossRefGoogle Scholar
  94. 94.
    Baylis LL, Rolls ET (1991) Responses of neurons in the primate taste cortex to glutamate. Physiol Behav 49(5):973–979PubMedCrossRefGoogle Scholar
  95. 95.
    Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14(9):5437–5452PubMedGoogle Scholar
  96. 96.
    Yamaguchi S, Ninomiya K (2000) Umami and food palatability. J Nutr 130(4S suppl):921S–926SGoogle Scholar
  97. 97.
    Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3(2):113–119PubMedCrossRefGoogle Scholar
  98. 98.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416(6877):199–202PubMedCrossRefGoogle Scholar
  99. 99.
    Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99(7):4692–4696PubMedCrossRefGoogle Scholar
  100. 100.
    Kinnamon SC (2009) Umami taste transduction mechanisms. Am J Clin Nutr 90(3):753S–755SPubMedCrossRefGoogle Scholar
  101. 101.
    Oya M, Suzuki H, Watanabe Y, Sato M, Tsuboi T (2011) Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes Cells 16(5):608–616PubMedCrossRefGoogle Scholar
  102. 102.
    Steiner JE, Glaser D, Hawilo ME, Berridge KC (2001) Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev 25(1):53–74PubMedCrossRefGoogle Scholar
  103. 103.
    Yamaguchi S (1991) Basic properties of umami and effects on humans. Physiol Behav 49(5):833–841PubMedCrossRefGoogle Scholar
  104. 104.
    Bellisle F, Monneuse MO, Chabert M, Larue-Achagiotis C, Lanteaume MT, Louis-Sylvestre J (1991) Monosodium glutamate as a palatability enhancer in the European diet. Physiol Behav 49(5):869–873PubMedCrossRefGoogle Scholar
  105. 105.
    Yamaguchi S, Takahashi C (1984) Interactions of monosodium glutamate and sodium chloride on saltiness and palatability. J Food Sci 49:82–85CrossRefGoogle Scholar
  106. 106.
    Yamaguchi S, Takihashi C (1984) Hedonic functions of monosodium glutamate and four basic taste substances used at various concentration levels in single and complex systems. Agric Biol Chem 48:1077–1081CrossRefGoogle Scholar
  107. 107.
    Bellisle F (1998) Effects of monosodium glutamate on human food palatability. Ann N Y Acad Sci 855:438–441PubMedCrossRefGoogle Scholar
  108. 108.
    Rogers PJ, Blundell J (1990) Umami and appetite: effects of monosodium glutamate on hunger and food intake in human subjects. Physiol Behav 48:801–804PubMedCrossRefGoogle Scholar
  109. 109.
    Schiffman SS (2000) Intensification of sensory properties of foods for the elderly. J Nutr 130(4S suppl):927S–930SGoogle Scholar
  110. 110.
    Okiyama A, Beauchamp GK (1998) Taste dimensions of monosodium glutamate (MSG) in a food system: role of glutamate in young American subjects. Physiol Behav 65(1):177–181PubMedCrossRefGoogle Scholar
  111. 111.
    Rhodes J, Titherley AC, Norman JA, Wood R, Lord DW (1991) A survey of the monosodium glutamate content of foods and an estimation of the dietary intake of monosodium glutamate. Food Addit Contam 8(5):663–672PubMedCrossRefGoogle Scholar
  112. 112.
    Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, Kempski O, Stehle P, Steinhart H, Walker R (2007) Consensus meeting: monosodium glutamate—an update. Eur J Clin Nutr 61(3):304–313PubMedCrossRefGoogle Scholar
  113. 113.
    Walker R, Lupien JR (2000) The safety evaluation of monosodium glutamate. J Nutr 130(4S suppl):1049S–1052SGoogle Scholar
  114. 114.
    He K, Du S, Xun P, Sharma S, Wang H, Zhai F, Popkin B (2011) Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China health and nutrition survey (CHNS). Am J Clin Nutr 93(6):1328–1336PubMedCrossRefGoogle Scholar
  115. 115.
    Shi Z, Luscombe-Marsh ND, Wittert GA, Yuan B, Dai Y, Pan X, Taylor AW (2010) Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. Br J Nutr 104(3):457–463PubMedCrossRefGoogle Scholar
  116. 116.
    He K, Zhao L, Daviglus ML, Dyer AR, Van Horn L, Garside D, Zhu L, Guo D, Wu Y, Zhou B, Stamler J, INTERMAP Cooperative Research Group (2008) Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP Study. Obesity 16(8):1875–1880PubMedCrossRefGoogle Scholar
  117. 117.
    Hermanussen M, Tresguerres JA (2003) Does high glutamate intake cause obesity? J Pediatr Endocrinol Metab 16(7):965–968PubMedCrossRefGoogle Scholar
  118. 118.
    Samuels A (2010) Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu nutrition study of Chinese adults–comments by Samuels. Br J Nutr 104(11):1729PubMedCrossRefGoogle Scholar
  119. 119.
    Janeczko MJ, Stoll B, Chang X, Guan X, Burrin DG (2007) Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs. J Nutr 137(11):2384–2390PubMedGoogle Scholar
  120. 120.
    Blachier F, Guihot-Joubrel G, Vaugelade P, Le Boucher J, Bernard F, Duée P, Cynober L (1999) Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 60(4):349–357PubMedCrossRefGoogle Scholar
  121. 121.
    Graham TE, Sgro V, Friars D, Gibala MJ (2000) Glutamate ingestion: the plasma and muscle free amino acid pools of resting humans. Am J Physiol Endocrinol Metab 278(1):E83–E89PubMedGoogle Scholar
  122. 122.
    Stegink LD, Filer LJ Jr, Baker GL (1985) Plasma glutamate concentrations in adult subjects ingesting monosodium L-glutamate in consomme. Am J Clin Nutr 42(2):220–225PubMedGoogle Scholar
  123. 123.
    Chevassus H, Renard E, Bertrand G, Mourand I, Puech R, Molinier N, Bockaert J, Petit P, Bringer J (2002) Effects of oral monosodium (L)-glutamate on insulin secretion and glucose tolerance in healthy volunteers. Br J Clin Pharmacol 53(6):641–643PubMedCrossRefGoogle Scholar
  124. 124.
    Mourtzakis M, Graham TE (2002) Glutamate ingestion and its effects at rest and during exercise in humans. J Appl Physiol 93(4):1251–1259PubMedGoogle Scholar
  125. 125.
    Lamb MM, Myers MA, Barriga K, Zimmet PZ, Rewers M, Norris JM (2008) Maternal diet during pregnancy and islet autoimmunity in offspring. Pediatr Diabetes 9:135–141PubMedCrossRefGoogle Scholar
  126. 126.
    Virtanen SM, Kenward MG, Erkkola M, Kautiainen S, Kronberg-Kippilä C, Hakulinen T, Ahonen S, Uusitalo L, Niinistö S, Veijola R, Simell O, Ilonen J, Knip M (2006) Age at introduction of new foods and advanced beta cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetologia 49(7):1512–1521PubMedCrossRefGoogle Scholar
  127. 127.
    Virtanen SM, Takkinen HM, Nevalainen J, Kronberg-Kippilä C, Salmenhaara M, Uusitalo L, Kenward MG, Erkkola M, Veijola R, Simell O, Ilonen J, Knip M (2011) Early introduction of root vegetables in infancy associated with advanced ß-cell autoimmunity in young children with human leukocyte antigen-conferred susceptibility to Type 1 diabetes. Diabet Med 28(8):965–971PubMedCrossRefGoogle Scholar
  128. 128.
    Myers M, Zimmet P (2008) Halting the accelerating epidemic of type 1 diabetes. Lancet 371(9626):1730–1731PubMedCrossRefGoogle Scholar
  129. 129.
    Martin FL, Ames JM (2001) Formation of Strecker aldehydes and pyrazines in a fried potato model system. J Agric Food Chem 49(8):3885–3892PubMedCrossRefGoogle Scholar
  130. 130.
    Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2005) Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem 69(7):1232–1238PubMedCrossRefGoogle Scholar
  131. 131.
    Jeevanandam M, Ramias L, Schiller WR (1991) Altered plasma free amino acid levels in obese traumatized man. Metabolism 40(4):385–390PubMedCrossRefGoogle Scholar
  132. 132.
    Fujinami S, Hijikata Y, Shiozaki Y, Sameshima Y (1990) Profiles of plasma amino acids in fasted patients with various liver diseases. Hepatogastroenterology 37(suppl 2):81–84PubMedGoogle Scholar
  133. 133.
    Vannucchi H, Marchini JS, Padovan GJ, dos-Santos JE, Dutra-de-Oliveira JE (1985) Amino acid patterns in the plasma and ascitic fluid of cirrhotic patients. Braz J Med Biol Res 18(4):465–470PubMedGoogle Scholar
  134. 134.
    Holm E, Hack V, Tokus M, Breitkreutz R, Babylon A, Dröge W (1997) Linkage between postabsorptive amino acid release and glutamate uptake in skeletal muscle tissue of healthy young subjects, cancer patients, and the elderly. J Mol Med 75(6):454–461PubMedCrossRefGoogle Scholar
  135. 135.
    Eck HP, Drings P, Dröge W (1989) Plasma glutamate levels, lymphocyte reactivity and death rate in patients with bronchial carcinoma. J Cancer Res Clin Oncol 115(6):571–574PubMedCrossRefGoogle Scholar
  136. 136.
    Dröge W, Eck HP, Betzler M, Näher H (1987) Elevated plasma glutamate levels in colorectal carcinoma patients and in patients with acquired immunodeficiency syndrome (AIDS). Immunobiology 174(4–5):473–479PubMedCrossRefGoogle Scholar
  137. 137.
    Eck HP, Frey H, Dröge W (1989) Elevated plasma glutamate concentrations in HIV-1-infected patients may contribute to loss of macrophage and lymphocyte functions. Int Immunol 1(4):367–372PubMedCrossRefGoogle Scholar
  138. 138.
    Dröge W, Eck HP, Betzler M, Schlag P, Drings P, Ebert W (1988) Plasma glutamate concentration and lymphocyte activity. J Cancer Res Clin Oncol 114(2):124–128PubMedCrossRefGoogle Scholar
  139. 139.
    Aliprandi A, Longoni M, Stanzani L, Tremolizzo L, Vaccaro M, Begni B, Galimberti G, Garofolo R, Ferrarese C (2005) Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. J Cereb Blood Flow Metab 25(4):513–519PubMedCrossRefGoogle Scholar
  140. 140.
    Tremolizzo L, DiFrancesco JC, Rodriguez-Menendez V, Sirtori E, Longoni M, Cassetti A, Bossi M, El Mestikawy S, Cavaletti G, Ferrarese C (2006) Human platelets express the synaptic markers VGLUT1 and 2 and release glutamate following aggregation. Neurosci Lett 404(3):262–265PubMedCrossRefGoogle Scholar
  141. 141.
    Castellanos M, Sobrino T, Pedraza S, Moldes O, Pumar JM, Silva Y, Serena J, García-Gil M, Castillo J, Dávalos A (2008) High plasma glutamate concentrations are associated with infarct growth in acute ischemic stroke. Neurology 71(23):1862–1868PubMedCrossRefGoogle Scholar
  142. 142.
    Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodríguez-Antigüedad A, Matute C (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195(1–2):194–198PubMedCrossRefGoogle Scholar
  143. 143.
    Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, Zis V, Sfagos C, Vassilopoulos D (2008) Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg 110(3):222–226PubMedCrossRefGoogle Scholar
  144. 144.
    Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, Petropoulou O, Zis V, Sfagos C, Vassilopoulos D (2008) Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis. In Vivo 22(1):137–141PubMedGoogle Scholar
  145. 145.
    Iwasaki Y, Ikeda K, Shiojima T, Kobayashi T, Kinoshita M (1994) Different plasma glutamate levels in subtype of amyotrophic lateral sclerosis. Acta Neurol Scand 89(5):404–405PubMedCrossRefGoogle Scholar
  146. 146.
    Iwasaki Y, Ikeda K, Shiojima T, Kinoshita M (1992) Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson’s disease. Neurosci Lett 145(2):175–177PubMedCrossRefGoogle Scholar
  147. 147.
    Paraskevas GP, Triantafyllou NI, Kapaki E, Limpitaki G, Petropoulou O, Vassilopoulos D (2006) Add-on lamotrigine treatment and plasma glutamate levels in epilepsy: relation to treatment response. Epilepsy Res 70(2–3):184–189PubMedCrossRefGoogle Scholar
  148. 148.
    Aldred S, Moore KM, Fitzgerald M, Waring RH (2003) Plasma amino acid levels in children with autism and their families. J Autism Dev Disord 33(1):93–97PubMedCrossRefGoogle Scholar
  149. 149.
    Alam Z, Coombes N, Waring RH, Williams AC, Steventon GB (1998) Plasma levels of neuroexcitatory amino acids in patients with migraine or tension headache. J Neurol Sci 156(1):102–106PubMedCrossRefGoogle Scholar
  150. 150.
    Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry 30(6):1155–1158PubMedCrossRefGoogle Scholar
  151. 151.
    Trang LE, Fürst P, Odebäck AC, Lövgren O (1985) Plasma amino acids in rheumatoid arthritis. Scand J Rheumatol 14(4):393–402PubMedCrossRefGoogle Scholar
  152. 152.
    Anfossi G, Russo I, Trovati M (2009) Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis 19(6):440–449PubMedCrossRefGoogle Scholar
  153. 153.
    Nieuwdorp M, Stroes ES, Meijers JC, Büller H (2005) Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol 5(2):155–159PubMedCrossRefGoogle Scholar
  154. 154.
    Davì G, Chiarelli F, Santilli F, Pomilio M, Vigneri S, Falco A, Basili S, Ciabattoni G, Patrono C (2003) Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation 107(25):3199–3203PubMedCrossRefGoogle Scholar
  155. 155.
    Hu H, Johansson BL, Hjemdahl P, Li N (2004) Exercise-induced platelet and leucocyte activation is not enhanced in well-controlled Type 1 diabetes, despite increased activity at rest. Diabetologia 47(5):853–859PubMedCrossRefGoogle Scholar
  156. 156.
    Swaim AF, Field DJ, Fox-Talbot K, Baldwin WM 3rd, Morrell CN (2010) Platelets contribute to allograft rejection through glutamate receptor signaling. J Immunol 185(11):6999–7006PubMedCrossRefGoogle Scholar
  157. 157.
    Tolosa L, Caraballo-Miralles V, Olmos G, Lladó J (2011) TNF-α potentiates glutamate-induced spinal cord motoneuron death via NF-κB. Mol Cell Neurosci 46(1):176–186PubMedCrossRefGoogle Scholar
  158. 158.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106(4):473–481PubMedCrossRefGoogle Scholar
  159. 159.
    Jensen MD, Haymond MW (1991) Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover. Am J Clin Nutr 53(1):172–176PubMedGoogle Scholar
  160. 160.
    Welle S, Barnard RR, Statt M, Amatruda JM (1992) Increased protein turnover in obese women. Metabolism 41(9):1028–1034PubMedCrossRefGoogle Scholar
  161. 161.
    Welle S, Statt M, Barnard R, Amatruda J (1994) Differential effect of insulin on whole-body proteolysis and glucose metabolism in normal-weight, obese, and reduced-obese women. Metabolism 43(4):441–445PubMedCrossRefGoogle Scholar
  162. 162.
    Chevalier S, Marliss EB, Morais JA, Lamarche M, Gougeon R (2005) Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr 82(2):355–365PubMedGoogle Scholar
  163. 163.
    Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281(15):811–816PubMedCrossRefGoogle Scholar
  164. 164.
    Gougeon R, Morais JA, Chevalier S, Pereira S, Lamarche M, Marliss EB (2008) Determinants of whole-body protein metabolism in subjects with and without type 2 diabetes. Diabetes Care 31(1):128–133PubMedCrossRefGoogle Scholar
  165. 165.
    Marliss EB, Gougeon R (2002) Diabetes mellitus, lipidus et proteinus! Diabetes Care 25(8):1474–1476Google Scholar
  166. 166.
    Pereira S, Marliss EB, Morais JA, Chevalier S, Gougeon R (2008) Insulin resistance of protein metabolism in type 2 diabetes. Diabetes 57(1):56–63PubMedCrossRefGoogle Scholar
  167. 167.
    Hack V, Stütz O, Kinscherf R, Schykowski M, Kellerer M, Holm E, Dröge W (1996) Elevated venous glutamate levels in (pre)catabolic conditions result at least partly from a decreased glutamate transport activity. J Mol Med 74(6):337–343PubMedCrossRefGoogle Scholar
  168. 168.
    Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W (2009) Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 8(4):1623–1630PubMedCrossRefGoogle Scholar
  169. 169.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770PubMedCrossRefGoogle Scholar
  170. 170.
    Konstantinides S, Schäfer K, Koschnick S, Loskutoff DJ (2001) Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest 108(10):1533–1540PubMedGoogle Scholar
  171. 171.
    Ahrén B, Baldwin RM, Havel PJ (2000) Pharmacokinetics of human leptin in mice and rhesus monkeys. Int J Obes Relat Metab Disord 24(12):1579–1585PubMedCrossRefGoogle Scholar
  172. 172.
    Shanley LJ, Irving AJ, Harvey J (2001) Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 21(24):RC186Google Scholar
  173. 173.
    Moult PR, Harvey J (2009) Regulation of glutamate receptor trafficking by leptin. Biochem Soc Trans 37(6):1364–1368PubMedCrossRefGoogle Scholar
  174. 174.
    Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, Ilkayeva OR, Wenner BR, Bain JR, Lee JJ, Lim SC, Khoo CM, Shah SH, Newgard CB (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53(4):757–767PubMedCrossRefGoogle Scholar
  175. 175.
    Butte NF, Hsu HW, Thotathuchery M, Wong WW, Khoury J, Reeds P (1999) Protein metabolism in insulin-treated gestational diabetes. Diabetes Care 22(5):806–811PubMedCrossRefGoogle Scholar
  176. 176.
    Bennet WM, Connacher AA, Jung RT, Stehle P, Rennie MJ (1991) Effects of insulin and amino acids on leg protein turnover in IDDM patients. Diabetes 40(4):499–508PubMedCrossRefGoogle Scholar
  177. 177.
    Tessari P, Nosadini R, Trevisan R, De Kreutzenberg SV, Inchiostro S, Duner E, Biolo G, Marescotti MC, Tiengo A, Crepaldi G (1986) Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism. J Clin Invest 77(6):1797–1804Google Scholar
  178. 178.
    Nair KS, Ford GC, Halliday D (1987) Effect of intravenous insulin treatment on in vivo whole body leucine kinetics and oxygen consumption in insulin-deprived type I diabetic patients. Metabolism 36(5):491–495PubMedCrossRefGoogle Scholar
  179. 179.
    Luzi L, Castellino P, Simonson DC, Petrides AS, DeFronzo RA (1990) Leucine metabolism in IDDM. Role of insulin and substrate availability. Diabetes 39(1):38–48Google Scholar
  180. 180.
    Umpleby AM, Boroujerdi MA, Brown PM, Carson ER, Sönksen PH (1986) The effect of metabolic control on leucine metabolism in type 1 (insulin-dependent) diabetic patients. Diabetologia 29(3):131–141PubMedCrossRefGoogle Scholar
  181. 181.
    Nair KS, Halliday D, Matthews DE, Welle SL (1987) Hyperglucagonemia during insulin deficiency accelerates protein catabolism. Am J Physiol 253(2):E208–E213PubMedGoogle Scholar
  182. 182.
    Oresic M, Simell S, Sysi-Aho M, Näntö-Salonen K, Seppänen-Laakso T, Parikka V, Katajamaa M, Hekkala A, Mattila I, Keskinen P, Yetukuri L, Reinikainen A, Lähde J, Suortti T, Hakalax J, Simell T, Hyöty H, Veijola R, Ilonen J, Lahesmaa R, Knip M, Simell O (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205(13):2975–2984PubMedCrossRefGoogle Scholar
  183. 183.
    Velloso LA, Kämpe O, Hallberg A, Christmanson L, Betsholtz C, Karlsson FA (1993) Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression. J Clin Invest 91(5):2084–2090PubMedCrossRefGoogle Scholar
  184. 184.
    Velloso LA, Björk E, Ballagi AE, Funa K, Andersson A, Kämpe O, Karlsson FA, Eizirik DL (1994) Regulation of GAD expression in islets of Langerhans occurs both at the mRNA and protein level. Mol Cell Endocrinol 102(1–2):31–37PubMedCrossRefGoogle Scholar
  185. 185.
    Burton AR, Baquet Z, Eisenbarth GS, Tisch R, Smeyne R, Workman CJ, Vignali DA (2010) Central nervous system destruction mediated by glutamic acid decarboxylase-specific CD4+ T cells. J Immunol 184(9):4863–4870PubMedCrossRefGoogle Scholar
  186. 186.
    Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131(9 Suppl):2515S–2522SPubMedGoogle Scholar
  187. 187.
    Kvaratskhelia E, Dabrundashvili N, Gagua M, Maisuradze E, Mikeladze D (2008) Glutamate decreases the secretion of IL-10 by peripheral blood lymphocytes in persons with autoimmune thyroiditis. Georgian Med News 164:73–76PubMedGoogle Scholar
  188. 188.
    Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20(3):463–466PubMedCrossRefGoogle Scholar
  189. 189.
    Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets 9(3):373–382PubMedGoogle Scholar
  190. 190.
    Nevo U, Golding I, Neumann AU, Schwartz M, Akselrod S (2004) Autoimmunity as an immune defense against degenerative processes: a primary mathematical model illustrating the bright side of autoimmunity. J Theor Biol 227(4):583–592PubMedCrossRefGoogle Scholar
  191. 191.
    Hauben E, Roncarolo MG, Nevo U, Schwartz M (2005) Beneficial autoimmunity in Type 1 diabetes mellitus. Trends Immunol 26(5):248–253PubMedCrossRefGoogle Scholar
  192. 192.
    Kimpimäki T, Kulmala P, Savola K, Kupila A, Korhonen S, Simell T, Ilonen J, Simell O, Knip M (2002) Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 87(10):4572–4579PubMedCrossRefGoogle Scholar
  193. 193.
    Cho JH, Chen L, Kim MH, Chow RH, Hille B, Koh DS (2010) Characteristics and functions of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors expressed in mouse pancreatic {alpha}-cells. Endocrinology 151(4):1541–1550PubMedCrossRefGoogle Scholar
  194. 194.
    Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO (2008) Glutamate is a positive autocrine signal for glucagon release. Cell Metab 7(6):545–554PubMedCrossRefGoogle Scholar
  195. 195.
    Uehara S, Muroyama A, Echigo N, Morimoto R, Otsuka M, Yatsushiro S, Moriyama Y (2004) Metabotropic glutamate receptor type 4 is involved in autoinhibitory cascade for glucagon secretion by alpha-cells of islet of Langerhans. Diabetes 53(4):998–1006PubMedCrossRefGoogle Scholar
  196. 196.
    Müller WA, Faloona GR, Unger RH (1973) Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance. Am J Med 54(1):52–57Google Scholar
  197. 197.
    Baron AD, Schaeffer L, Shragg P, Kolterman OG (1987) Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36(3):274–283PubMedCrossRefGoogle Scholar
  198. 198.
    Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB (1987) Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 64(1):106–110PubMedCrossRefGoogle Scholar
  199. 199.
    Dunning BE, Gerich JE (2007) The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 28(3):253–283PubMedCrossRefGoogle Scholar
  200. 200.
    Starke AA, Erhardt G, Berger M, Zimmermann H (1984) Elevated pancreatic glucagon in obesity. Diabetes 33(3):277–280PubMedCrossRefGoogle Scholar
  201. 201.
    Solerte SB, Rondanelli M, Giacchero R, Stabile M, Lovati E, Cravello L, Pontiggia B, Vignati G, Ferrari E, Fioravanti M (1999) Serum glucagon concentration and hyperinsulinemia influence renal haemodynamics and urinary protein loss in normotensive patients with central obesity. In J Obes Relat Metab Disord 23(9):997–1003CrossRefGoogle Scholar
  202. 202.
    Weiss R, D’Adamo E, Santoro N, Hershkop K, Caprio S (2011) Basal α-cell up-regulation in obese insulin-resistant adolescents. J Clin Endocrinol Metab 96(1):91–97PubMedCrossRefGoogle Scholar
  203. 203.
    Ferrannini E, Muscelli E, Natali A, Gabriel R, Mitrakou A, Flyvbjerg A, Golay A, Hojlund K (2007) The relationship between insulin sensitivity and cardiovascular disease risk (RISC) project Investigators. Association of fasting glucagon and proinsulin concentrations with insulin resistance. Diabetologia 50(11):2342–2347Google Scholar
  204. 204.
    Asano T, Ninomiya H, Kan K, Yamamoto T, Okumura M (1989) Plasma glucagon response to intravenous alanine in obese and non-obese subjects. Endocrinol Jpn 36(5):767–773PubMedCrossRefGoogle Scholar
  205. 205.
    Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149:1–38PubMedCrossRefGoogle Scholar
  206. 206.
    Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-Potsdam Study. Diabetes 52(3):812–817PubMedCrossRefGoogle Scholar
  207. 207.
    Herder C, Haastert B, Müller-Scholze S, Koenig W, Thorand B, Holle R, Wichmann HE, Scherbaum WA, Martin S, Kolb H (2005) Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative health research in the region of Augsburg survey S4 (KORA S4). Diabetes 54(suppl 2):S11–S17PubMedCrossRefGoogle Scholar
  208. 208.
    Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G, Kerr-Conte J, Pattou F, Berney T, Pipeleers D, Halban PA, Schuit FC, Donath MY (2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci USA 105(35):13163–13168PubMedCrossRefGoogle Scholar
  209. 209.
    Furuta M, Yano H, Zhou A, Rouillé Y, Holst JJ, Carroll R, Ravazzola M, Orci L, Furuta H, Steiner DF (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci U SA 94(13):6646–6651CrossRefGoogle Scholar
  210. 210.
    Furuta M, Zhou A, Webb G, Carroll R, Ravazzola M, Orci L, Steiner DF (2001) Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J Biol Chem 276(29):27197–27202PubMedCrossRefGoogle Scholar
  211. 211.
    Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF (2002) Severe block in processing of proinsulin to insulin accompanied by elevation of des-64, 65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci USA 99(16):10299–10304PubMedCrossRefGoogle Scholar
  212. 212.
    Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20(6):876–913PubMedCrossRefGoogle Scholar
  213. 213.
    Furuta M, Carroll R, Martin S, Swift HH, Ravazzola M, Orci L, Steiner DF (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31, 32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273(6):3431–3437PubMedCrossRefGoogle Scholar
  214. 214.
    Vincent M, Guz Y, Rozenberg M, Webb G, Furuta M, Steiner D, Teitelman G (2003) Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis. Endocrinology 144(9):4061–4069PubMedCrossRefGoogle Scholar
  215. 215.
    Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, Tene-Perez CE, Goldschmidt L, Hart J, Perego C, Comuzzie AG, Tejero ME, Finzi G, Placidi C, La Rosa S, Capella C, Halff G, Gastaldelli A, DeFronzo RA, Folli F (2009) Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci USA 106(33):13992–13997PubMedCrossRefGoogle Scholar
  216. 216.
    Turque N, Plaza S, Radvanyi F, Carriere C, Saule S (1994) Pax-QNR/Pax-6, a paired box- and homeobox-containing gene expressed in neurons, is also expressed in pancreatic endocrine cells. Mol Endocrinol 8(7):929–938PubMedCrossRefGoogle Scholar
  217. 217.
    Hayashi M, Yamada H, Uehara S, Morimoto R, Muroyama A, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2003) Secretory granule-mediated co-secretion of L-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. J Biol Chem 278(3):1966–1974PubMedCrossRefGoogle Scholar
  218. 218.
    Selway JL, Moore CE, Mistry R, John Challiss RA, Herbert TP (2011) Molecular mechanisms of muscarinic acetylcholine receptor-stimulated increase in cytosolic free Ca(2+) concentration and ERK1/2 activation in the MIN6 pancreatic beta-cell line. Acta Diabetol Aug 11 [Epub ahead of print] PubMed PMID: 21833779Google Scholar
  219. 219.
    Molnár E, Váradi A, McIlhinney RA, Ashcroft SJ (1995) Identification of functional ionotropic glutamate receptor proteins in pancreatic beta-cells and in islets of Langerhans. FEBS Lett 371(3):253–257Google Scholar
  220. 220.
    Muroyama A, Uehara S, Yatsushiro S, Echigo N, Morimoto R, Morita M, Hayashi M, Yamamoto A, Koh DS, Moriyama Y (2004) A novel variant of ionotropic glutamate receptor regulates somatostatin secretion from delta-cells of islets of Langerhans. Diabetes 53(7):1743–1753PubMedCrossRefGoogle Scholar
  221. 221.
    Bai L, Zhang X, Ghishan FK (2003) Characterization of vesicular glutamate transporter in pancreatic alpha—and beta -cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol 284(5):G808–G814PubMedGoogle Scholar
  222. 222.
    Di Cairano ES, Davalli AM, Perego L, Sala S, Sacchi VF, La Rosa S, Finzi G, Placidi C, Capella C, Conti P, Centonze VE, Casiraghi F, Bertuzzi F, Folli F, Perego C (2011) The glial glutamate transporter 1 (GLT1) is expressed by pancreatic beta-cells and prevents glutamate-induced beta-cell death. J Biol Chem 286(16):14007–14018PubMedCrossRefGoogle Scholar
  223. 223.
    Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, Usellini L, Nano R, Bonini P, Bertuzzi F, Marlier LN, Davalli AM, Carandente O, Pontiroli AE, Melino G, Marchetti P, Lauro R, Sesti G, Folli F (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50(6):1290–1301PubMedCrossRefGoogle Scholar
  224. 224.
    Jeffrey KD, Alejandro EU, Luciani DS, Kalynyak TB, Hu X, Li H, Lin Y, Townsend RR, Polonsky KS, Johnson JD (2008) Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc Natl Acad Sci USA 105(24):8452–8457PubMedCrossRefGoogle Scholar
  225. 225.
    Pradhan AD, Manson JE, Meigs JB, Rifai N, Buring JE, Liu S, Ridker PM (2003) Insulin, proinsulin, proinsulin:insulin ratio, and the risk of developing type 2 diabetes mellitus in women. Am J Med 114(6):438–444PubMedCrossRefGoogle Scholar
  226. 226.
    Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42(4):318–343PubMedCrossRefGoogle Scholar
  227. 227.
    Cunha DA, Ladrière L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, Marchetti P, Eizirik DL, Cnop M (2009) Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58(12):2851–2862PubMedCrossRefGoogle Scholar
  228. 228.
    Tsunekawa S, Yamamoto N, Tsukamoto K, Itoh Y, Kaneko Y, Kimura T, Ariyoshi Y, Miura Y, Oiso Y, Niki I (2007) Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol 193(1):65–74PubMedCrossRefGoogle Scholar
  229. 229.
    Walter H, Lübben G (2005) Potential role of oral thiazolidinedione therapy in preserving beta-cell function in type 2 diabetes mellitus. Drugs 65(1):1–13PubMedCrossRefGoogle Scholar
  230. 230.
    Perry T, Holloway HW, Weerasuriya A, Mouton PR, Duffy K, Mattison JA, Greig NH (2007) Evidence of GLP-1-mediated neuroprotection in an animal model of pyridoxine-induced peripheral sensory neuropathy. Exp Neurol 203(2):293–301PubMedCrossRefGoogle Scholar
  231. 231.
    Harkavyi A, Whitton PS (2010) Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection.Br J Pharmacol 159(3):495–501Google Scholar
  232. 232.
    White AT, Murphy AN (2010) Administration of thiazolidinediones for neuroprotection in ischemic stroke: a pre-clinical systematic review. J Neurochem 115(4):845–853. doi: 10.1111/j.1471-4159.2010.06999.x Epub 2010 OctPubMedCrossRefGoogle Scholar
  233. 233.
    Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH (2002) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther 302(3):881–888PubMedCrossRefGoogle Scholar
  234. 234.
    Romera C, Hurtado O, Mallolas J, Pereira MP, Morales JR, Romera A, Serena J, Vivancos J, Nombela F, Lorenzo P, Lizasoain I, Moro MA (2007) Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cereb Blood Flow Metab 27(7):1327–1338PubMedCrossRefGoogle Scholar
  235. 235.
    Thal SC, Heinemann M, Luh C, Pieter D, Werner C, Engelhard K (2011) Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-γ-independent mechanisms. J Neurotrauma 28(6):983–993PubMedCrossRefGoogle Scholar
  236. 236.
    Angehagen M, Ben-Menachem E, Rönnbäck L, Hansson E (2003) Topiramate protects against glutamate- and kainate-induced neurotoxicity in primary neuronal-astroglial cultures. Epilepsy Res 54(1):63–71PubMedCrossRefGoogle Scholar
  237. 237.
    Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24(18):4412–4420PubMedCrossRefGoogle Scholar
  238. 238.
    Wilding J, Van Gaal L, Rissanen A, Vercruysse F, Fitchet M (2004) A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes 28(11):1399–1410CrossRefGoogle Scholar
  239. 239.
    Toplak H, Hamann A, Moore R, Masson E, Gorska M, Vercruysse F, Sun X, Fitchet M (2007) Efficacy and safety of topiramate in combination with metformin in the treatment of obese subjects with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Int J Obes 31(1):138–146CrossRefGoogle Scholar
  240. 240.
    Stenlo¨f K, Ro¨ssner S, Vercruysse F, Kumar A, Fitchet M, Sjostrom L (2007) Topiramate in the treatment of obese subjects with drug-naive type 2 diabetes. Diabetes Obes Metab 9(3):360–368Google Scholar
  241. 241.
    Rosenstock J, Hollander P, Gadde KM, Sun X, Strauss R, Leung A (2007) A randomized, double-blind, placebo-controlled, multicenter study to assess the efficacy and safety of topiramate controlled release in the treatment of obese type 2 diabetic patients. Diabetes Care 30(6):1480–1486PubMedCrossRefGoogle Scholar
  242. 242.
    Liang Y, Chen X, Osborne M, DeCarlo SO, Jetton TL, Demarest K (2005) Topiramate ameliorates hyperglycaemia and improves glucose-stimulated insulin release in ZDF rats and db/db mice. Diabetes Obes Metab 7(4):360–369PubMedCrossRefGoogle Scholar
  243. 243.
    Frigerio F, Chaffard G, Berwaer M, Maechler P (2006) The antiepileptic drug topiramate preserves metabolism-secretion coupling in insulin secreting cells chronically exposed to the fatty acid oleate. Biochem Pharmacol 72(8):965–973PubMedCrossRefGoogle Scholar
  244. 244.
    Davalli AM, Perego C, Folli FB, Bosi E (2011) Long-lasting remission of type 1 diabetes following treatment with topiramate for generalized seizures. Acta Diabetol. doi: 10.1007/s00592-011-0268-y
  245. 245.
    Evertsen J, Alemzadeh R, Wang X (2009) Increasing incidence of pediatric type 1 diabetes mellitus in Southeastern Wisconsin: relationship with body weight at diagnosis. PLoS One 4(9):e6873PubMedCrossRefGoogle Scholar
  246. 246.
    Ljungkrantz M, Ludvigsson J, Samuelsson U (2008) Type 1 diabetes: increased height and weight gains in early childhood. Pediatr Diabetes 9(3):50–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alberto M. Davalli
    • 1
    • 3
  • Carla Perego
    • 2
  • Franco B. Folli
    • 3
  1. 1.Diabetes and Endocrinology Unit, Department of Internal MedicineSan Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Molecular Science Applied to BiosystemsUniversita` degli Studi di MilanoMilanItaly
  3. 3.Diabetes Division, Department of MedicineUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations