Skip to main content

Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications

Abstract

Diabetic complication is comprised of a wide variety of pathophysiological factors involving proinflammatory cytokines, adipokines, and oxidative stress, among others. Each of these complications differs in their incidence and the stage of their occurrence. We examined cytokines and stress markers in 48 patients with type 2 diabetes mellitus and compared the difference of their contribution to pathogenesis between nephropathy and other diabetic complications. Hemoglobin A1c correlated with the level of low-density lipoprotein-cholesterol, and significantly elevated in the severe macroangiopathy group. Cystatin C increased in the severe microangiopathy groups but did not increase in the macroangiopathy group. The levels of interleukin 18 (IL-18), high-sensitive CRP (H-CRP), liver-type fatty acid binding protein, and 8-hydroxy-2-deoxyguanosine increased in the severe microangiopathy group. These data suggest the participation of proinflammatory signaling and oxidative stress in the progression of microangiopathy. In particular, IL-18 and H-CRP were significantly elevated only in the severe nephropathy group but did not significantly elevate in other complications. These data suggest another effect of IL-18 on glomerulus in addition to its proinflammatory effect. In conclusion, we propose that IL18 has a specific role that contributes more closely to the progression of diabetic nephropathy than other diabetic complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Di Marzio D, Mohn A, Mokini ZH et al (2006) Macroangiopathy in adults and children with diabetes: from molecular mechanisms to vascular damage (part 1). Horm Metab Res 38:691–705

    Article  PubMed  CAS  Google Scholar 

  2. Bash LD, Selvin E, Steffes M et al (2008) Poor glycemic control in diabetes and the risk of incident chronic kidney disease even in the absence of albuminuria and retinopathy: Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med 168:2440–2447

    Article  PubMed  Google Scholar 

  3. Adams HP Jr (2009) Secondary prevention of atherothrombotic events after ischemic stroke. Mayo Clin Proc 84:43–51

    Article  PubMed  Google Scholar 

  4. Umemura T, Soga J, Hidaka T et al (2008) Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens 21:1203–1209

    Article  PubMed  CAS  Google Scholar 

  5. Odermarsky M, Andersson S, Pesonen E et al (2008) Respiratory infection recurrence and passive smoking in early atherosclerosis in children and adolescents with type 1 diabetes. Eur J Clin Invest 38:381–388

    Article  PubMed  CAS  Google Scholar 

  6. Kaneto H, Matsuoka TA, Katakami N et al (2007) Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med 7:674–686

    Article  PubMed  CAS  Google Scholar 

  7. Koh KK, Han SH, Quon MJ (2005) Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol 46:1978–1985

    Article  PubMed  CAS  Google Scholar 

  8. Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7:257–264

    Article  PubMed  CAS  Google Scholar 

  9. Taal MW, Zandi-Nejad K, Weening B et al (2000) Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney. Kidney Int 58:1664–1676

    Article  PubMed  CAS  Google Scholar 

  10. Timoshanko JR, Kitching AR, Holdsworth SR et al (2001) Interleukin-12 from intrinsic cells is an effector of renal injury in crescentic glomerulonephritis. J Am Soc Nephrol 12:464–471

    PubMed  CAS  Google Scholar 

  11. Reddy P (2004) Interleukin-18: recent advances. Curr Opin Hematol 11:405–410

    Article  PubMed  CAS  Google Scholar 

  12. Suchanek H, Myśliwska J, Siebert J et al (2005) High serum interleukin-18 concentrations in patients with coronary artery disease and type 2 diabetes mellitus. Eur Cytokine Netw 16:177–185

    PubMed  CAS  Google Scholar 

  13. Araki S, Dobashi K, Kubo K et al (2006) High molecular weight, rather than total, adiponectin levels better reflect metabolic abnormalities associated with childhood obesity. J Clin Endocrinol Metab 91:5113–5116

    Article  PubMed  CAS  Google Scholar 

  14. Komaba H, Igaki N, Goto S et al (2006) Increased serum high-molecular-weight complex of adiponectin in type 2 diabetic patients with impaired renal function. Am J Nephrol 26:476–482

    Article  PubMed  CAS  Google Scholar 

  15. Wang G, Gong Y, Anderson J et al (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42:871–879

    Article  PubMed  CAS  Google Scholar 

  16. Kamijo-Ikemori A, Sugaya T, Obama A et al (2006) Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction. Am J Pathol 169:1107–1117

    Article  PubMed  CAS  Google Scholar 

  17. Evans MD, Cooke MS, Akil M et al (2000) Aberrant processing of oxidative DNA damage in systemic lupus erythematosus. Biochem Biophys Res Commun 273:894–898

    Article  PubMed  CAS  Google Scholar 

  18. Ghee JY, Han DH, Song HK et al (2008) The role of macrophage in the pathogenesis of chronic cyclosporine-induced nephropathy. Nephrol Dial Transplant 23:4061–4069

    Article  PubMed  CAS  Google Scholar 

  19. Araki S, Haneda M, Koya D et al (2007) Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia 50:867–873

    Article  PubMed  CAS  Google Scholar 

  20. Ridker PM, Cushman M, Stampfer MJ et al (1998) Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 97:425–428

    PubMed  CAS  Google Scholar 

  21. Konishi K, Tanabe F, Taniguchi M et al (1997) A simple and sensitive bioassay for the detection of human interleukin-18/interferon-gamma-inducing factor using human myelomonocytic KG-1 cells. J Immunol Methods 209:187–191

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi H, Ouchi N, Kihara S et al (2004) Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 94:e27–e31

    Article  PubMed  CAS  Google Scholar 

  23. Pfeifer PH, Kawahara MS, Hugli TE (1999) Possible mechanism for in vitro complement activation in blood and plasma samples: futhan/EDTA controls in vitro complement activation. Clin Chem 45:1190–1199

    PubMed  CAS  Google Scholar 

  24. Kamijo A, Sugaya T, Hikawa A et al (2006) Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol Cell Biochem 284:175–182

    Article  PubMed  CAS  Google Scholar 

  25. Toyokuni S, Tanaka T, Hattori Y et al (1997) Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76:365–374

    PubMed  CAS  Google Scholar 

  26. Dagenais GR, St-Pierre A, Gilbert P et al (2009) Comparison of prognosis for men with type 2 diabetes mellitus and men with cardiovascular disease. CMAJ 180:40–47

    Article  PubMed  Google Scholar 

  27. Neeli H, Gadi R, Rader DJ (2009) Managing diabetic dyslipidemia: beyond statin therapy. Curr Diab Rep 9:11–17

    Article  PubMed  CAS  Google Scholar 

  28. Sawicki PT, Mühlhauser I, Didjurgeit U et al (1995) Mortality and morbidity in treated hypertensive type 2 diabetic patients with micro- or macroproteinuria. Diabet Med 12:893–898

    Article  PubMed  CAS  Google Scholar 

  29. Freedman BI, Sedor JR (2008) Hypertension-associated kidney disease: perhaps no more. J Am Soc Nephrol 19:2047–2051

    Article  PubMed  Google Scholar 

  30. Luyckx VA, Cairo LV, Compston CA et al (2009) The oncostatin M pathway plays a major role in the renal acute phase response. Am J Physiol Renal Physiol 296:F875–F883

    Article  PubMed  CAS  Google Scholar 

  31. Gong D, Lu J, Chen X et al (2008) A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-β activation in the kidneys of rats used as a model of diabetes. Diabetologia 51:1741–1751

    Article  PubMed  CAS  Google Scholar 

  32. Esfandiari E, McInnes IB, Lindop G et al (2001) A proinflammatory role of IL-18 in the development f spontaneous autoimmune disease. J Immunol 167:5338–5347

    PubMed  CAS  Google Scholar 

  33. Wong CK, Lit LC, Tam LS et al (2005) Elevation of plasma osteopontin concentration is correlated with disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford). 44:602–606

    Article  CAS  Google Scholar 

  34. Zilverschoon GR, Tack CJ, Joosten LA et al (2008) Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. Int J Obes (London) 32:1407–1414

    Article  CAS  Google Scholar 

  35. Ruotsalainen E, Vauhkonen I, Salmenniemi U et al (2008) Markers of endothelial dysfunction and low-grade inflammation are associated in the offspring of type 2 diabetic subjects. Atherosclerosis 197:271–277

    Article  PubMed  CAS  Google Scholar 

  36. Wong CK, Ho CY, Li EK et al (2002) Elevated production of interleukin-18 is associated with renal disease in patients with systemic lupus erythematosus. Clin Exp Immunol 130:345–351

    Article  PubMed  CAS  Google Scholar 

  37. Tucci M, Quatraro C, Lombardi L et al (2008) Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum 58:251–262

    Article  PubMed  CAS  Google Scholar 

  38. Hinokio Y, Suzuki S, Hirai M et al (2002) Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia 45:877–882

    Article  PubMed  CAS  Google Scholar 

  39. Morgan CL, Currie CJ, Stott NC et al (2000) The prevalence of multiple diabetes-related complications. Diabet Med 17:146–151

    Article  PubMed  CAS  Google Scholar 

  40. Groop PH, Forsblom C, Thomas MC (2005) Mechanisms of disease: pathway-selective insulin resistance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 1:100–110

    Article  PubMed  CAS  Google Scholar 

  41. Sharma K, Ramachandrarao S, Qiu G et al (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118:1645–1656

    PubMed  CAS  Google Scholar 

  42. Fujita T, Fujioka T, Murakami T et al (2007) Chylomicron accelerates C3 tick-over by regulating the role of factor H, leading to overproduction of acylation stimulating protein. J Clin Lab Anal 21:14–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the fund of 50th anniversary of the foundation of Nihon University School of Medicine in 2007.

Conflicts of interest statement

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Fujita.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujita, T., Ogihara, N., Kamura, Y. et al. Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol 49, 111–117 (2012). https://doi.org/10.1007/s00592-010-0178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-010-0178-4

Keywords