Skip to main content
Log in

Effects of intermittent high glucose on oxidative stress in endothelial cells

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The objective of this study is to explore the mechanism of oxidative stress induced by intermittent high glucose in porcine iliac endothelial cells (PIECs). The PIECs were exposed to intermittent or constant high glucose for 3 or 6 days, and the mean fluorescent intensity (MFI) was measured via intracellular reactive oxygen species (ROS) captured by flow cytometry. The NADPH oxidase activity was measured by chemiluminescence with lucigenin. Intermittent high glucose induced a greater over-production of ROS than constant high glucose in PIECs; the NADPH oxidase activity was increased under both constant and intermittent high glucose conditions, being more marked in the latter (P < 0.05). In conclusion, intermittent high glucose induced more ROS in PIECs than constant high glucose, this effect seemed to be, at least in part related to the enhanced activation of NADPH oxidase. Glucose fluctuation may be involved in the development of vascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. The DECODE Study Group (2001) Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 161(3):397–405

    Article  Google Scholar 

  2. The DECODE Study Group (2003) Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases. Diaetes Care 26(3):688–696

    Article  Google Scholar 

  3. Watada H, Azuma K, Kawamori R (2007) Glucose fluctuation on the progression of diabetic macroangiopathy—new findings from monocyte adhesion to endothelial cells. Diabetes Res Clin Pract 77(Suppl 1):S58–S61

    Article  CAS  PubMed  Google Scholar 

  4. Otsuka A, Azuma K, Iesaki T et al (2005) Temporary hyperglycaemia provokes monocyte adhesion to endothelial cells in rat thoracic aorta. Diabetologia 48(12):2667–2674

    Article  CAS  PubMed  Google Scholar 

  5. Azuma K, Kawamori R, Toyofuku Y et al (2006) Repetitive fluctuations in blood glucose enhance monocyte adhesion to the endothelium of rat thoracic aorta. Arterioscler Thromb Vasc Biol 26(10):2275–2280

    Article  CAS  PubMed  Google Scholar 

  6. Sherwin RS (2004) Diabetes mellitus, Chap 243. In: Goldman L, Ausiello D (eds) Cecil textbook of medicine, 22nd edn. Saunders, Philadelphia, pp 1424–1452

  7. Ceriello A (1998) The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications. Diabet Med 15:188–193

    Article  CAS  PubMed  Google Scholar 

  8. Muggeo M, Zoppini G, Bonora E et al (2000) Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care 23(1):45–50

    Article  CAS  PubMed  Google Scholar 

  9. Brun E, Zoppini G, Zamboni C et al (2001) Glucose instability is associated with a high level of circulating p-selectin. Diabetes Care 24(9):1685

    Article  CAS  PubMed  Google Scholar 

  10. Rosen P, Nawroth PP, King G et al (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MSBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17(3):189–212

    Article  CAS  PubMed  Google Scholar 

  11. Wright E Jr, Scism-Bacon JL, Glass LC (2006) Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60(3):308–314

    Article  CAS  PubMed  Google Scholar 

  12. Soh N, Katayama Y, Maeda M (2001) A fluorescent probe for monitoring nitric oxide production using a novel detection concept. Analyst 126(5):564–566

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka K, Miura T, Umezawa N et al (2001) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123(11):2530–2536

    Article  CAS  PubMed  Google Scholar 

  14. Barbacanne MA, Souchard JP, Darblade B et al (2000) Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques. Free Radic Biol Med 29(5):388–396

    Article  CAS  PubMed  Google Scholar 

  15. Walrand S, Valeix S, Rodriguez C et al (2003) Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 331(1–2):103–110

    Article  CAS  PubMed  Google Scholar 

  16. Quagliaro L, Piconi L, Assaloni R et al (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical endothelial cells. Diabetes 52(11):2795–2804

    Article  CAS  PubMed  Google Scholar 

  17. Quagliaro L, Piconi L, Assaloni R et al (2005) Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183(2):259–267

    Article  CAS  PubMed  Google Scholar 

  18. Risso A, Mercuri F, Quagliaro L et al (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281(5):E924–E930

    CAS  PubMed  Google Scholar 

  19. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    CAS  PubMed  Google Scholar 

  20. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108(16):1912–1916

    Article  PubMed  Google Scholar 

  21. Schleicher E, Friess U (2007) Oxidative stress, AGE and atherosclerosis. Kidney Int Suppl 106:S17–S26

    Article  CAS  PubMed  Google Scholar 

  22. Sorescu D, Szocs K, Griendling KK (2001) NAD(P)H oxidases and their relevance to atherosclerosis. Trends Cardiovasc Med 11(3–4):124–131

    Article  CAS  PubMed  Google Scholar 

  23. Dourron HM, Jacobson GM, Park JL et al (2005) Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol 288(2):H946–H953

    Article  CAS  PubMed  Google Scholar 

  24. Qin-min Ge, Qing Su (2009) Effect of the NADPH oxidase inhibitor apocynin on oxidative stress induced by glucose in endothelial cells. J Shanghai Jiaotong Univ Med Sci (in press)

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No.30872727). This study greatly acknowledges the support from department of cell biology, Shanghai Jiaotong University School of Medicine. The authors should also give many thanks to Professor Ji-shou Hou, Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, QM., Dong, Y., Zhang, HM. et al. Effects of intermittent high glucose on oxidative stress in endothelial cells. Acta Diabetol 47 (Suppl 1), 97–103 (2010). https://doi.org/10.1007/s00592-009-0140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-009-0140-5

Keywords

Navigation