Skip to main content

Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study

Abstract

Late complications in type 2 diabetic patients are commonly associated with accelerated development of atherosclerosis. In type 2 diabetes mellitus, non-enzymatic glycosylation of apo-B that is a function of hyperglycaemia is an efficient biochemical way of low-density lipoprotein atherogenic modification. So, proper metabolic control is needed to prevent late complications of diabetes. The study was performed to estimate the effects of time-released garlic powder tablet Allicor on the parameters of metabolic control and plasma lipids in type 2 diabetes mellitus. The metabolic action of Allicor was investigated in the 4-week double-blinded placebo-controlled study in 60 type 2 diabetic patients. Fasting blood glucose was measured daily, and serum fructosamine as well as cholesterol and triglyceride levels were determined at the baseline, after 1, 2, 3 and 4 weeks. It has been demonstrated that treatment with Allicor resulted in better metabolic control due to the lowering of fasting blood glucose, serum fructosamine and serum triglyceride levels. The results of this study may allow recommending garlic powder tablets Allicor for the treatment of type 2 diabetes mellitus along with dietary treatment and/or sulfonylurea derivatives to achieve better metabolic control. The benefits from garlic preparations may lead to the reduction of cardiovascular risk in diabetic patients.

This is a preview of subscription content, access via your institution.

References

  1. Krolewski AS, Warram JH, Valsania P, Martin BC, Laffel LM, Christlieb AR (1991) Evolving natural history of coronary artery disease in diabetes mellitus. Am J Med 90:56S–61S

    PubMed  Article  CAS  Google Scholar 

  2. Burchfiel CM, Reed DM, Marcus EB, Strong JP, Hayashi T (1993) Association of diabetes mellitus with coronary atherosclerosis and myocardial lesions. An autopsy study from the Honolulu Heart Program. Am J Epidemiol 137:1328–1340

    PubMed  CAS  Google Scholar 

  3. Schwartz CJ, Valente AJ, Sprague EA (1993) A modern view of atherogenesis. Am J Cardiol 71:9B–14B

    PubMed  Article  CAS  Google Scholar 

  4. Pyorala K, Laakso M, Uusitupa M (1987) Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 3:463–524

    PubMed  CAS  Google Scholar 

  5. Nesto R (2001) CHD: a major burden in type 2 diabetes. Acta Diabetol 38(1):S3–S8

    PubMed  Article  Google Scholar 

  6. Swanston-Flatt SK, Flatt PR, Day C, Bailey CJ (1991) Traditional dietary adjuncts for the treatment of diabetes mellitus. Proc Nutr Soc 50:641–651

    PubMed  Article  CAS  Google Scholar 

  7. Harenberg J, Giese C, Zimmermann R (1988) Effect of dried garlic on blood coagulation, fibrinolysis, platelet aggregation and serum cholesterol levels in patients with hyperlipoproteinemia. Atherosclerosis 74:247–249

    PubMed  Article  CAS  Google Scholar 

  8. Berthold HK, Sudhop T (1998) Garlic preparations for prevention of atherosclerosis. Curr Opin Lipidol 9:565–569

    PubMed  Article  CAS  Google Scholar 

  9. Wang HX, Ng TB (1999) Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci 65:2663–2677

    PubMed  Article  CAS  Google Scholar 

  10. Kruse-Jarres JD, Jarausch J, Lehmann P, Vogt BW, Rietz P (1989) A new colorimetric method for the determination of fructosamine. Lab Med 13:245–253

    CAS  Google Scholar 

  11. Bordia AK, Joshi HK, Sanadhya YK, Bhu N (1977) Effect of essential oil of garlic on serum fibrinolytic activity in patients with coronary artery disease. Atherosclerosis 28:155–159

    PubMed  Article  CAS  Google Scholar 

  12. Lau B, Lam F, Wang-Chen R (1987) Effect of odor-modified garlic preparation on blood lipids. Nutr Res 7:139–149

    Article  CAS  Google Scholar 

  13. Phelps S, Harris WS (1993) Garlic supplementation and lipoprotein oxidation susceptibility. Lipids 28:475–477

    PubMed  Article  CAS  Google Scholar 

  14. Campbell JH, Efendy JL, Smith NJ, Campbell GR (2001) Molecular basis by which garlic suppresses atherosclerosis. J Nutr 131:1006S–1009S

    PubMed  CAS  Google Scholar 

  15. Block E (1985) The chemistry of garlic and onions. Sci Am 252:114–119

    PubMed  CAS  Article  Google Scholar 

  16. Orekhov AN, Tertov VV (1997) In vitro effect of garlic powder extract on lipid content in normal and atherosclerotic human aortic cells. Lipids 32:1055–1060

    PubMed  Article  CAS  Google Scholar 

  17. Yeh YY, Liu L (2001) Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr 131:989S–993S

    PubMed  CAS  Google Scholar 

  18. Ledet T, Rasmussen LM, Heickendorff L, Barfod K, Thogersen VB (1990) The nature of large vessel disease in diabetes mellitus. J Diabet Complications 4:63–65

    PubMed  Article  CAS  Google Scholar 

  19. Koskinen SV, Reunanen AR, Martelin TP, Valkonen T (1998) Mortality in a large population-based cohort of patients with drug-treated diabetes mellitus. Am J Public Health 88:765–770

    PubMed  CAS  Google Scholar 

  20. Goraya TY, Leibson CL, Palumbo PJ (2002) Coronary atherosclerosis in diabetes mellitus: a population-based autopsy study. J Am Coll Cardiol 40:946–953

    PubMed  Article  Google Scholar 

  21. Nesto RW, Rutter MK (2002) Impact of the atherosclerotic process in patients with diabetes. Acta Diabetol 39(2):S22–S28

    PubMed  Article  Google Scholar 

  22. Koskinen P, Irjala K, Viikari J, Panula O, Matikainen MT (1987) Serum fructosamine in the assessment of glycaemic control in diabetes mellitus. Scand J Clin Lab Invest 47:285–292

    PubMed  CAS  Article  Google Scholar 

  23. Witztum JL, Mahoney EM, Branks MJ, Fisher M, Elam R, Steinberg D (1982) Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity. Diabetes 31:283–291

    PubMed  Article  CAS  Google Scholar 

  24. Wiklund O, Witztum JL, Carew TE, Pittman RC, Elam RL, Steinberg D (1987) Turnover and tissue sites of degradation of glucosylated low density lipoprotein in normal and immunized rabbits. J Lipid Res 28:1098–1109

    PubMed  CAS  Google Scholar 

  25. Witztum JL, Koschinsky T (1989) Metabolic and immunological consequences of glycation of low density lipoproteins. Prog Clin Biol Res 304:219–234

    PubMed  CAS  Google Scholar 

  26. Brownlee M, Vlassara H, Cerami A (1985) Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 34:938–941

    PubMed  Article  CAS  Google Scholar 

  27. Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90:6434–6438

    PubMed  Article  CAS  Google Scholar 

  28. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    PubMed  Article  CAS  Google Scholar 

  29. Mathew PT, Augusti KT (1973) Studies on the effect of allicin (diallyl disulphide-oxide) on alloxan diabetes. I. Hypoglycaemic action and enhancement of serum insulin effect and glycogen synthesis. Indian J Biochem Biophys 10:209–212

    PubMed  CAS  Google Scholar 

  30. Jain RC, Vyas CR, Mahatma OP (1973) Hypoglycaemic action of onion and garlic. Lancet 2:1491

    PubMed  Article  CAS  Google Scholar 

  31. Jain RC, Vyas CR (1974) Hypoglycaemia action of onion on rabbits. Br Med J 2:730

    PubMed  CAS  Article  Google Scholar 

  32. Jain RC, Vyas CR (1975) Garlic in alloxan-induced diabetic rabbits. Am J Clin Nutr 28:684–685

    PubMed  Google Scholar 

  33. Augusti KT, Mathew PT (1975) Effect of allicin on certain enzymes of liver after a short term feeding to normal rats. Experientia 31:148–149

    PubMed  Article  CAS  Google Scholar 

  34. Begum H, Bari MA (1985) Effect of garlic oil on the pancreas of experimental diabetes in guineapigs. Bangladesh Med Res Counc Bull 11:64–68

    PubMed  CAS  Google Scholar 

  35. Sheela CG, Augusti KT (1992) Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn. Indian J Exp Biol 30:523–526

    PubMed  CAS  Google Scholar 

  36. Sheela CG, Kumud K, Augusti KT (1995) Anti-diabetic effects of onion and garlic sulfoxide amino acids in rats. Planta Med 61:356–357

    PubMed  Article  CAS  Google Scholar 

  37. Augusti KT, Sheela CG (1996) Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats. Experientia 52:115–120

    PubMed  Article  CAS  Google Scholar 

  38. Farva D, Goji IA, Joseph PK, Augusti KT (1986) Effects of garlic oil on streptozotocin-diabetic rats maintained on normal and high fat diets. Indian J Biochem Biophys 23:24–27

    PubMed  CAS  Google Scholar 

  39. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR (1990) Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 33:462–464

    PubMed  Article  CAS  Google Scholar 

  40. Ohaeri OC (2001) Effect of garlic oil on the levels of various enzymes in the serum and tissue of streptozotocin diabetic rats. Biosci Rep 21:19–24

    PubMed  Article  CAS  Google Scholar 

  41. Patumraj S, Tewit S, Amatyakul S (2000) Comparative effects of garlic and aspirin on diabetic cardiovascular complications. Drug Deliv 7:91–96

    PubMed  Article  CAS  Google Scholar 

  42. Sitprija S, Plengvidhya C, Kangkaya V, Bhuvapanich S, Tunkayoon M (1987) Garlic and diabetes mellitus phase II clinical trial. J Med Assoc Thai 70(2):223–227

    PubMed  Google Scholar 

  43. Melchinskaya EN, Popovtseva ON, Gromnatskii NI (1997) Immunologic aspects of alisate in diabetes mellitus patients. Biull Eksp Biol Med 124:595–597

    Google Scholar 

  44. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 105(3):310–315

    PubMed  Article  Google Scholar 

  45. Ide N, Lau BH (1999) Aged garlic extract attenuates intracellular oxidative stress. Phytomedicine 6:125–131

    PubMed  CAS  Google Scholar 

  46. Sobenin IA, Maksumova MA, Slavina ES, Balabolkin MI, Orekhov AN (1994) Sulfonylureas induce cholesterol accumulation in cultured human intimal cells and macrophages. Atherosclerosis 105:159–163

    PubMed  Article  CAS  Google Scholar 

  47. Iberl B, Winkler G, Miller B, Knobloch K (1990) Quantitative determination of allicin and alliin from garlic by HPLC. Planta Med 56:320–326

    PubMed  Article  CAS  Google Scholar 

  48. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y (2001) Intake of garlic and its bioactive components. J Nutr 131:955S–962S

    PubMed  CAS  Google Scholar 

  49. Orekhov AN, Tertov VV, Sobenin IA, Pivovarova EM (1995) Direct anti-atherosclerosis-related efects of garlic. Ann Med 27:63–65

    PubMed  Article  CAS  Google Scholar 

  50. Orekhov AN, Grunwald J (1997) Effects of garlic on atherosclerosis. Nutrition 13:656–663

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the participants of this study for their time, effort and support. This work was supported with grant from the Institute for Atherosclerosis Research, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Gorchakova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobenin, I.A., Nedosugova, L.V., Filatova, L.V. et al. Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetol 45, 1–6 (2008). https://doi.org/10.1007/s00592-007-0011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-007-0011-x

Keywords

  • Diabetes mellitus
  • Hyperglycemia
  • Metabolic control
  • Garlic
  • Placebo-controlled study