Skip to main content
Log in

Measurement of intramyocellular lipid levels with 2-D magnetic resonance spectroscopic imaging at 1.5 T

  • ORIGINAL
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract.

Intramyocellular lipid (IMCL) plays an important role in the study of metabolism in vivo. Magnetic resonance spectroscopy (MRS) studies of IMCL are usually performed with clinical 1.5-T magnetic resonance imaging (MRI) systems and have employed the single-voxel MRS technique. The present study reports the results of our systematic evaluation of the ability of single- and multi-voxel MRS to yield high-quality, contamination-free IMCL levels from the tibialis anterior (TA) muscle. A clinical, 1.5-T, whole-body MRI scanner was used to measure IMCL with a standard knee coil, head coil, or a 3-cm receive-only surface coil with a body coil transmit. Excellent IMCL spectra were obtained in healthy males in only 8 min from multiple 0.25-cm3 voxels using the surface coil receive/body coil transmit in conjunction with the standard PRESS spectroscopic imaging (SI) technique. This approach provided the spatial resolution and voxel placement flexibility permitting optimal separation of IMCL and extramyocellular lipid. Our findings demonstrate the potential of the SI approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Mao, X., Wang, Z. et al. Measurement of intramyocellular lipid levels with 2-D magnetic resonance spectroscopic imaging at 1.5 T. Acta Diabetol 40 (Suppl 1), s51–s54 (2003). https://doi.org/10.1007/s00592-003-0026-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-003-0026-x

Key words

Navigation