Skip to main content
Log in

A geometric approach to Euler’s addition formula

A direct formulation of the addition law for elliptic curves given in terms of Weierstraß quartics

  • Mathematik in Forschung und Anwendung
  • Published:
Mathematische Semesterberichte Aims and scope Submit manuscript

Abstract

Plane quartic curves given by equations of the form y 2=P(x) with polynomials P of degree 4 represent singular models of elliptic curves which are directly related to elliptic integrals in the form studied by Euler and for which he developed his famous addition formulas. For cubic curves, the well-known secant and tangent construction establishes an immediate connection of addition formulas for the corresponding elliptic integrals with the structure of an algebraic group. The situation for quartic curves is considerably more complicated due to the presence of the singularity. We present a geometric construction, similar in spirit to the secant method for cubic curves, which defines an addition law on a quartic elliptic curve given by rational functions. Furthermore, we show how this addition on the curve itself corresponds to the addition in the (generalized) Jacobian variety of the curve, and we show how any addition formula for elliptic integrals of the form \(\int (1/\sqrt{P(x)})\,\mathrm{d}x\) with a quartic polynomial P can be derived directly from this addition law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alling, N.L.: Real Elliptic Curves. North Holland, Amsterdam (1981)

    MATH  Google Scholar 

  2. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Basel (1986)

    MATH  Google Scholar 

  3. Cooke, R.: Abel’s Theorem. In: Rowe, D.E., McCleary, J. (eds.) The History of Modern Mathematics, vol. I, pp. 389–421. Academic Press, San Diego (1989)

    Google Scholar 

  4. Fischer, G.: Ebene algebraische Kurven. Vieweg, Wiesbaden (1994)

    MATH  Google Scholar 

  5. Gray, J.J.: Algebraic Geometry in the late Nineteenth Century. In: Rowe, D.E., McCleary, J. (eds.) The History of Modern Mathematics, vol. I, pp. 361–385. Academic Press, San Diego (1989)

    Google Scholar 

  6. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    MATH  Google Scholar 

  7. Husemoller, D.: Elliptic Curves. Springer, Berlin (1987)

    MATH  Google Scholar 

  8. Klein, F.: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Springer, Berlin (1926) (reprint Wissenschaftliche Buchgesellschaft, 1986)

    MATH  Google Scholar 

  9. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford University Press, London (2002)

    MATH  Google Scholar 

  10. Mordell, L.J.: On the rational solutions of the indeterminate equations of the 3rd and 4th degrees. Math. Proc. Camb. Philos. Soc. 21, 179–192 (1922)

    Google Scholar 

  11. Norio, A.: Elliptic curves from Fermat to Weil. Hist. Sci. 9(1), 27–35 (1999)

    MATH  Google Scholar 

  12. Poincaré, H.: Sur les propriétés arithmétiques des courbes algébriques. J. Math. Pures Appl., sér. 5 7(2), 161–233 (1901)

    Google Scholar 

  13. Rosenlicht, M.: Generalized Jacobian varieties. Ann. Math. 59, 505–530 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schappacher, N.: Développement de la loi de groupe sur une cubique. Séminaire de théorie des nombres Paris 1988–1989. Prog. Math. 91, 159–184 (1990) Birkhäuser

    MathSciNet  Google Scholar 

  15. Shafarevich, I.R.: Basic Algebraic Geometry. Springer, Berlin (1977)

    MATH  Google Scholar 

  16. Siegel, C.L.: Topics in Complex Function Theory, vol. 1. Wiley, New York (1969)

    MATH  Google Scholar 

  17. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Berlin (1986)

    MATH  Google Scholar 

  18. Weil, A.: L’arithmétique sur les courbes algébriques, Acta Mathematica 52 (1928)

  19. Weil, A.: Zahlentheorie – Ein Gang durch die Geschichte von Hammurapi bis Legendre. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  20. Zagier, D.: Elliptische Kurven: Fortschritte und Anwendungen. Jahresberichte der Deutschen Mathematiker-Vereinigung 92, 58–76 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Selder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selder, E., Spindler, K. A geometric approach to Euler’s addition formula. Math Semesterber 58, 185–214 (2011). https://doi.org/10.1007/s00591-011-0090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00591-011-0090-1

Keywords

AMS Subject Classification

Navigation