Skip to main content

Advertisement

Log in

Nanoparticle ultrasonication outperforms conventional irrigation solutions in eradicating Staphylococcus aureus biofilm from titanium surfaces: an in vitro study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

Bacterial biofilms create a challenge in the treatment of prosthetic joint infection (PJI), and failure to eradicate biofilms is often implicated in the high rates of recurrence. In this study, we aimed to compare the effectiveness of a novel nanoparticle ultrasonication technology on Staphylococcus aureus biofilm eradication compared to commonly used orthopedic irrigation solutions.

Methods

Twenty-four sterile, titanium alloy discs were inoculated with a standardized concentration of methicillin-resistant S. aureus and cultured for seven days to allow for biofilm formation. Discs were then treated with either ultrasonicated nanoparticle therapy or irrigation with chlorhexidine gluconate, povidone-iodine or normal saline. The remaining bacteria on each surface was subsequently plated for colony-forming units of S. aureus. Bacterial eradication was reported as a decrease in CFUs relative to the control group. Mann–Whitney U tests were used to compare between groups.

Results

Treatment with ultrasonicated nanoparticles resulted in a significant mean decrease in CFUs of 99.3% compared to controls (p < 0.0001). Irrigation with povidone-iodine also resulted in a significant 77.5% reduction in CFUs compared to controls (p < 0.0001). Comparisons between ultrasonicated nanoparticles and povidone-iodine demonstrated a significantly higher reduction in bacterial CFUs in the nanoparticle group (p < 0.0001).

Conclusion

Ultrasonicated nanoparticle were superior to commonly used bactericidal irrigation solutions in the eradication of S. aureus from a titanium surface. Future clinical studies are warranted to evaluate this ultrsonication technology in the treatment of PJI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmed SS, Haddad FS (2019) Prosthetic joint infection. Bone Joint Res 8:570–572. https://doi.org/10.1302/2046-3758.812.BJR-2019-0340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kelmer G, Stone AH, Turcotte J, King PJ (2021) Reasons for revision: primary total hip arthroplasty mechanisms of failure. J Am Acad Orthop Surg 29:78–87. https://doi.org/10.5435/JAAOS-D-19-00860

    Article  PubMed  Google Scholar 

  3. Natsuhara KM, Shelton TJ, Meehan JP, Lum ZC (2019) Mortality during total hip periprosthetic joint infection. J Arthroplast 34:S337–S342. https://doi.org/10.1016/j.arth.2018.12.024

    Article  Google Scholar 

  4. Shichman I, Sobba W, Beaton G, Polisetty T, Nguyen HB, Dipane MV et al (2023) The effect of prosthetic joint infection on work status and quality of life: a multicenter. Int Study J Arthroplast 38:2685-2690.e1. https://doi.org/10.1016/j.arth.2023.06.015

    Article  Google Scholar 

  5. Leung F, Richards CJ, Garbuz DS, Masri BA, Duncan CP (2011) Two-stage total hip arthroplasty: how often does it control methicillin-resistant infection? Clin Orthop Relat Res 469:1009–1015. https://doi.org/10.1007/s11999-010-1725-6

    Article  PubMed  Google Scholar 

  6. Toulson C, Walcott-Sapp S, Hur J, Salvati E, Bostrom M, Brause B et al (2009) Treatment of infected total hip arthroplasty with a 2-stage reimplantation protocol. J Arthroplast 24:1051–1060. https://doi.org/10.1016/j.arth.2008.07.004

    Article  Google Scholar 

  7. Bosco F, Cacciola G, Giustra F, Risitano S, Capella M, Vezza D et al (2023) Characterizing recurrent infections after one-stage revision for periprosthetic joint infection of the knee: a systematic review of the literature. Eur J Orthop Surg Traumatol 33:2703–2715. https://doi.org/10.1007/s00590-023-03480-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Javad Mortazavi SM, Vegari D, Ho A, Zmistowski B, Parvizi J (2011) Two-stage exchange arthroplasty for infected total knee arthroplasty: predictors of failure. Clin Orthop Relat Res 469:3049–3054. https://doi.org/10.1007/s11999-011-2030-8

    Article  Google Scholar 

  9. Kubista B, Hartzler RU, Wood CM, Osmon DR, Hanssen AD, Lewallen DG (2012) Reinfection after two-stage revision for periprosthetic infection of total knee arthroplasty. Int Orthop 36:65–71. https://doi.org/10.1007/s00264-011-1267-x

    Article  PubMed  Google Scholar 

  10. Weinstein EJ, Stephens-Shields AJ, Newcomb CW, Silibovsky R, Nelson CL, O’Donnell JA et al (2023) Incidence, microbiological studies, and factors associated with prosthetic joint infection after total knee arthroplasty. JAMA Netw Open 6:e2340457. https://doi.org/10.1001/jamanetworkopen.2023.40457

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gbejuade HO, Lovering AM, Webb JC (2015) The role of microbial biofilms in prosthetic joint infections. Acta Orthop 86:147–158. https://doi.org/10.3109/17453674.2014.966290

    Article  PubMed  PubMed Central  Google Scholar 

  12. Josse J, Valour F, Maali Y, Diot A, Batailler C, Ferry T et al (2019) Interaction between staphylococcal biofilm and bone: how does the presence of biofilm promote prosthesis loosening. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01602

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soundarrajan D, Rajkumar N, Dhanasekararaja P, Rithika S, Rajasekaran S (2022) A comparison of outcomes of culture positive and culture negative acute knee prosthetic joint infection following debridement, antibiotics and implant retention (DAIR). Eur J Orthop Surg Traumatol 33:2375–2383. https://doi.org/10.1007/s00590-022-03445-2

    Article  PubMed  Google Scholar 

  14. Lazic I, Scheele C, Pohlig F, von Eisenhart-Rothe R, Suren C (2021) Treatment options in PJI—is two-stage still gold standard? J Orthop 23:180–184. https://doi.org/10.1016/j.jor.2020.12.021

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hameister R, Lim CT, Lohmann CH, Wang W, Singh G (2018) What Is the role of diagnostic and therapeutic sonication in periprosthetic joint infections? J Arthroplast 33:2575–2581. https://doi.org/10.1016/j.arth.2018.02.077

    Article  Google Scholar 

  16. Singh G, Hameister R, Feuerstein B, Awiszus F, Meyer H, Lohmann CH (2014) Low-frequency sonication may alter surface topography of endoprosthetic components and damage articular cartilage without eradicating biofilms completely. J Biomed Mater Res B Appl Biomater 102:1835–1846. https://doi.org/10.1002/jbm.b.33163

    Article  CAS  PubMed  Google Scholar 

  17. Bigelow TA, Northagen T, Hill TM, Sailer FC (2009) The destruction of escherichia coli biofilms using high-intensity focused ultrasound. Ultrasound Med Biol 35:1026–1031. https://doi.org/10.1016/j.ultrasmedbio.2008.12.001

    Article  PubMed  Google Scholar 

  18. Josic U, Mazzitelli C, Maravic T, Fidler A, Breschi L, Mazzoni A (2022) Biofilm in Endodontics: in vitro cultivation possibilities, sonic-, ultrasonic- and laser assisted removal techniques and evaluation of the cleaning efficacy. Polymers. https://doi.org/10.3390/polym14071334

  19. Welch EC, Chaltas K, Tripathi A (2023) Ultrasound frequency sonication facilitates high-throughput and uniform dissociation of cellular aggregates and tissues. SLAS Technol 28:70–81. https://doi.org/10.1016/j.slast.2023.01.001

    Article  CAS  PubMed  Google Scholar 

  20. Qian Z, Stoodley P, Pitt WG (1996) Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials 17:1975–1980. https://doi.org/10.1016/0142-9612(96)00022-1

    Article  CAS  PubMed  Google Scholar 

  21. Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87:207–216. https://doi.org/10.1016/S0168-1605(03)00075-8

    Article  CAS  PubMed  Google Scholar 

  22. Serena T, Lee SK, Lam K, Attar P, Meneses P, Ennis W (2009) The impact of noncontact, nonthermal, low-frequency ultrasound on bacterial counts in experimental and chronic wounds. Ostomy Wound Manage 55:22–30

    PubMed  Google Scholar 

  23. Seth AK, Nguyen KT, Geringer MR, Hong SJ, Leung KP, Mustoe TA et al (2013) Noncontact, low-frequency ultrasound as an effective therapy against Pseudomonas aeruginosa–infected biofilm wounds. Wound Repair Regen 21:266–274. https://doi.org/10.1111/wrr.12000

    Article  PubMed  Google Scholar 

  24. Joyce E, Al-Hashimi A, Mason TJ (2011) Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. J Appl Microbiol 110:862–870. https://doi.org/10.1111/j.1365-2672.2011.04923.x

    Article  CAS  PubMed  Google Scholar 

  25. Rothenberg AC, Wilson AE, Hayes JP, O’Malley MJ, Klatt BA (2017) Sonication of arthroplasty implants improves accuracy of periprosthetic joint infection cultures. Clin Orthop Relat Res 475:1827–1836. https://doi.org/10.1007/s11999-017-5315-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sebastian S, Malhotra R, Sreenivas V, Kapil A, Chaudhry R, Dhawan B (2018) Sonication of orthopaedic implants: a valuable technique for diagnosis of prosthetic joint infections. J Microbiol Methods 146:51–54. https://doi.org/10.1016/j.mimet.2018.01.015

    Article  PubMed  Google Scholar 

  27. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459. https://doi.org/10.4161/viru.2.5.17724

    Article  PubMed  PubMed Central  Google Scholar 

  28. Svensson Malchau K, Tillander J, Zaborowska M, Hoffman M, Lasa I, Thomsen P et al (2021) Biofilm properties in relation to treatment outcome in patients with first-time periprosthetic hip or knee joint infection. J Orthop Translat 30:31–40. https://doi.org/10.1016/j.jot.2021.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barton CB, Wang DL, An Q, Brown TS, Callaghan JJ, Otero JE (2020) Two-Stage exchange arthroplasty for periprosthetic joint infection following total hip or knee arthroplasty is associated with high attrition rate and mortality. J Arthroplast 35:1384–1389. https://doi.org/10.1016/j.arth.2019.12.005

    Article  Google Scholar 

  30. Zhu MF, Kim K, Cavadino A, Coleman B, Munro JT, Young SW (2021) Success rates of debridement, antibiotics, and implant retention in 230 infected total knee arthroplasties: implications for classification of periprosthetic joint infection. J Arthroplast 36:305–310. https://doi.org/10.1016/j.arth.2020.07.081

    Article  Google Scholar 

  31. Duque AF, Post ZD, Lutz RW, Orozco FR, Pulido SH, Ong AC (2017) Is there still a role for irrigation and debridement with liner exchange in acute periprosthetic total knee infection? J Arthroplast 32:1280–1284. https://doi.org/10.1016/j.arth.2016.10.029

    Article  Google Scholar 

  32. Shohat N, Goh GS, Harrer SL, Brown S (2022) Dilute povidone-iodine irrigation reduces the rate of periprosthetic joint infection following hip and knee arthroplasty: an analysis of 31,331 cases. J Arthroplast 37:226-231.e1. https://doi.org/10.1016/j.arth.2021.10.026

    Article  Google Scholar 

  33. Calkins TE, Culvern C, Nam D, Gerlinger TL, Levine BR, Sporer SM et al (2020) Dilute betadine lavage reduces the risk of acute postoperative periprosthetic joint infection in aseptic revision total knee and hip arthroplasty: a randomized controlled trial. J Arthroplast 35:538-543.e1. https://doi.org/10.1016/j.arth.2019.09.011

    Article  Google Scholar 

  34. Kataoka M, Tsumura H, Kaku N, Torisu T (2006) Toxic effects of povidone–iodine on synovial cell and articular cartilage. Clin Rheumatol 25:632–638. https://doi.org/10.1007/s10067-005-0133-x

    Article  PubMed  Google Scholar 

  35. von Keudell A, Canseco JA, Gomoll AH (2013) Deleterious effects of diluted povidone-iodine on articular cartilage. J Arthroplast 28:918–921. https://doi.org/10.1016/j.arth.2013.02.018

    Article  Google Scholar 

  36. van Meurs SJ, Gawlitta D, Heemstra KA, Poolman RW, Vogely HC, Kruyt MC (2014) Selection of an optimal antiseptic solution for intraoperative irrigation. J Bone Joint Surg 96:285–291. https://doi.org/10.2106/JBJS.M.00313

    Article  PubMed  Google Scholar 

  37. Driesman A, Shen M, Feng JE, Waren D, Slover J, Bosco J et al (2020) Perioperative chlorhexidine gluconate wash during joint arthroplasty has equivalent periprosthetic joint infection rates in comparison to betadine wash. J Arthroplast 35:845–848. https://doi.org/10.1016/j.arth.2019.10.009

    Article  Google Scholar 

  38. Lung BE, Le R, Callan K, McLellan M, Issagholian L, Yi J et al (2022) Chlorhexidine gluconate lavage during total joint arthroplasty may improve wound healing compared to dilute betadine. J Exp Orthop 9:67. https://doi.org/10.1186/s40634-022-00503-w

    Article  PubMed  PubMed Central  Google Scholar 

  39. Premkumar A, Nishtala SN, Nguyen JT, Bostrom MPG, Carli AV (2021) The AAHKS best podium presentation research award: comparing the efficacy of irrigation solutions on staphylococcal biofilm formed on arthroplasty surfaces. J Arthroplast 36:S26-32. https://doi.org/10.1016/j.arth.2021.02.033

    Article  Google Scholar 

  40. Tan TL, Kheir MM, Shohat N, Tan DD, Kheir M, Chen C et al (2018) Culture-negative periprosthetic joint infection: an update on what to expect. JB JS Open Access 3:e0060. https://doi.org/10.2106/JBJS.OA.17.00060

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bellova P, Knop-Hammad V, Königshausen M, Mempel E, Frieler S, Gessmann J et al (2019) Sonication of retrieved implants improves sensitivity in the diagnosis of periprosthetic joint infection. BMC Musculoskelet Disord 20:623. https://doi.org/10.1186/s12891-019-3006-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tani S, Lepetsos P, Stylianakis A, Vlamis J, Birbas K, Kaklamanos I (2018) Superiority of the sonication method against conventional periprosthetic tissue cultures for diagnosis of prosthetic joint infections. Eur J Orthop Surg Traumatol 28:51–57. https://doi.org/10.1007/s00590-017-2012-y

    Article  PubMed  Google Scholar 

  43. Kim K, Zhu M, Cavadino A, Munro JT, Young SW (2019) Failed debridement and implant retention does not compromise the success of subsequent staged revision in infected total knee arthroplasty. J Arthroplasty 34:1214-1220.e1. https://doi.org/10.1016/j.arth.2019.01.066

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Ran Schwarzkopf an unpaid advisor to Dimoveo Medical. He is a paid consultant for Smith + Nephew and Intellijoint. He receives research support from Smith + Nephew, Osteal and Aerobix as well as royalties from Smith + Nephew related to design. He also has stock options related to Intellijoint, Gauss Surgical and PSI. Yair Ramot is the CEO of Dimoveo Medical and Roi Ramot is the R&D manager of Dimoveo Medical which are directly relevant to this study. The rest of the authors listed have no financial or otherwise relevant disclosures.

Funding

There was no outside funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

Roi Ramot and Yair Ramot are cofounders of the startup, Dimoveo Medical™, which developed and is the proprieter for some of the new technology discussed in this manuscript. Ran Schwarzkopf is an unpaid consultant for Dimoveo Medical ™. Dimoveo donated samples of the technology for in vitro testing, however, did not supply additional funding. No other authors have disclosures relevant to the current manuscript and topic. 

Corresponding author

Correspondence to Ran Schwarzkopf.

Ethics declarations

Conflict of interest

The authors disclose the following conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaffler, B.C., Longwell, M., Byers, B. et al. Nanoparticle ultrasonication outperforms conventional irrigation solutions in eradicating Staphylococcus aureus biofilm from titanium surfaces: an in vitro study. Eur J Orthop Surg Traumatol (2024). https://doi.org/10.1007/s00590-024-03982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00590-024-03982-y

Keywords

Navigation