Skip to main content

Advertisement

Log in

Computerized surgical navigation resection of pelvic region simulated bone tumors using skin fiducial marker registration: an in vitro cadaveric study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Introduction

Computerized surgical navigation system guidance can improve bone tumor surgical resection accuracy. This study compared the 10-mm planned resection margin agreement between simulated pelvic-region bone tumors (SPBT) resected using either skin fiducial markers or Kirschner (K)-wires inserted directly into osseous landmarks with navigational system registration under direct observation. We hypothesized that skin fiducial markers would display similar resection margin accuracy.

Methods

Six cadaveric pelvises had one SPBT implanted into each supra-acetabular region. At the left hemi-pelvis, the skin fiducial marker group had guidance from markers placed over the pubic tubercle, the anterior superior iliac spine, the central and more posterior iliac crest, and the greater trochanter (5 markers). At the right hemi-pelvis, the K-wire group had guidance from 1.4-mm-diameter wires inserted into the pubic tubercle, and 3 inserted along the iliac crest (4 K-wires). The senior author, a fellowship-trained surgeon performed “en bloc” SPBT resections. The primary investigator, blinded to group assignment, measured actual resection margins.

Results

Twenty of 22 resection margins (91%) in the skin fiducial marker group were within the Bland–Altman plot 95% confidence interval for actual–planned margin mean difference (mean = −0.23 mm; 95% confidence intervals = 2.8 mm, − 3.3 mm). Twenty-one of 22 resection margins (95%) in the K-wire group were within the 95% confidence interval of actual–planned margin mean difference (mean = 0.26 mm; 95% confidence intervals = 1.7 mm, − 1.1 mm).

Conclusion

Pelvic bone tumor resection with navigational guidance from skin fiducial markers placed over osseous landmarks provided similar accuracy to K-wires inserted into osseous landmarks. Further in vitro studies with different SPBT dimensions/locations and clinical studies will better delineate use efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anon (2022) Key statistics about bone cancer. Bone Cancer Statistics. https://www.cancer.org/cancer/bone-cancer/about/key-statistics.html. Accessed 31 Dec 2023

  2. Bacci G, Longhi A, Versari M et al (2006) Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 106(5):1154–1161. https://doi.org/10.1002/cncr.21724

    Article  PubMed  Google Scholar 

  3. Bertrand TE, Cruz A, Binitie O et al (2016) Do surgical margins affect local recurrence and survival in extremity, nonmetastatic, high-grade osteosarcoma? Clin Orthop Relat Res 474(3):677–683. https://doi.org/10.1007/s11999-015-4359-x

    Article  PubMed  Google Scholar 

  4. Woerdeman PA, Willems PW, Noordmans HJ, Tulleken CA, van der Sprenkel JW (2007) Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg 106(6):1012–1016. https://doi.org/10.3171/jns.2007.106.6.1012

    Article  PubMed  Google Scholar 

  5. Woerdeman PA, Willems PW, Noordmans HJ, van der Berkelbach Sprenkel JW (2007) The effect of repetitive manual fiducial localization on target localization in image space. Operative Neurosurgery 60(2 Suppl 1):100–104. https://doi.org/10.1227/01.NEU.0000249231.74741.C3. (Discussion ON S103–4)

    Article  Google Scholar 

  6. Zamora R, Punt SE, Christman-Skieller C et al (2019) Are skin fiducials comparable to bone fiducials for registration when planning navigation-assisted musculoskeletal tumor resections in a cadaveric simulated tumor model? Clin Orthop Relat Res 477(12):2692–2701. https://doi.org/10.1097/CORR.0000000000000924

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anderson KC, Buehler KC, Markel DC (2005) Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplasty 20(7 suppl 3):132–138. https://doi.org/10.1016/j.arth.2005.05.009

    Article  PubMed  Google Scholar 

  8. Gebhard F, Weidner A, Liener UC et al (2004) Navigation at the spine. Injury 35(Suppl 1):A35–A45. https://doi.org/10.1016/j.injury.2004.05.009

    Article  Google Scholar 

  9. Jaramaz B, DiGioia AM, Blackwell M et al (1998) Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res 354:70–81. https://doi.org/10.1097/00003086-199809000-00010

    Article  Google Scholar 

  10. Kosugi Y, Watanabe E, Goto J et al (1988) An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng 35(2):147–152. https://doi.org/10.1109/10.1353

    Article  CAS  PubMed  Google Scholar 

  11. van der List JP, Chawla H, Joskowicz L et al (2016) Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc 24(11):3482–3495. https://doi.org/10.1007/s00167-016-4305-9

    Article  PubMed  Google Scholar 

  12. Sefcik RK, Rasouli J, Bederson JB et al (2017) Three-dimensional, computer simulated navigation in endoscopic neurosurgery. Interdiscip Neurosurg Adv Tech Case Manag 8:17–22. https://doi.org/10.1016/j.inat.2017.01.003

    Article  Google Scholar 

  13. Wixson RL, MacDonald MA (2005) Total hip arthroplasty through a minimal posterior approach using imageless computer-assisted hip navigation. J Arthroplasty 20(7 suppl 3):51–56. https://doi.org/10.1016/j.arth.2005.04.024

    Article  PubMed  Google Scholar 

  14. Ieguchi M, Hoshi M, Takada J et al (2012) Navigation-assisted surgery for bone and soft tissue tumors with bony extension. Clin Orthop Relat Res 470(1):275–283. https://doi.org/10.1007/s11999-011-2094-5

    Article  PubMed  Google Scholar 

  15. Zamora R (2016) Preliminary validation of skin fiducials for navigation-assisted musculoskeletal tumor resections: a cadaver study. In: Connective Tissue Oncology Society annual meeting program: Nov 9–12; Connective Tissue Oncology Society, Lisbon, Portugal, Alexandria, p 80

  16. Abraham JA, Kenneally B, Amer K et al (2018) Can navigation-assisted surgery help achieve negative margins in resection of pelvic and sacral tumors? Clin Orthop Relat Res 476(3):499–508. https://doi.org/10.1007/s11999.0000000000000064

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cartiaux O, Docquier P-L, Paul L et al (2008) Surgical inaccuracy of tumor resection and reconstruction within the pelvis: an experimental study. Acta Orthop 79(5):695–702. https://doi.org/10.1080/17453670810016731

    Article  PubMed  Google Scholar 

  18. Hüfner T, Kfuri M, Galanski M et al (2004) New indications for computer-assisted surgery: tumor resection in the pelvis. Clin Orthop Relat Res 426:219–225. https://doi.org/10.1097/01.blo.0000138958.11939.94

    Article  Google Scholar 

  19. Krettek C, Geerling J, Bastian L et al (2004) Computer aided tumor resection in the pelvis. Injury 35(Suppl 1):A79-83. https://doi.org/10.1016/j.injury.2004.05.014

    Article  Google Scholar 

  20. Jeys L, May PL (2016) Bone tumor navigation in the pelvis. In: Ritacco LE, Milano FE, Chao E (eds) Computer-assisted musculoskeletal surgery: thinking and executing in 3D. Springer, Cham, pp 71–87

    Chapter  Google Scholar 

  21. Eccles C, Whitaker J, Nyland J et al (2018) Skin fiducial markers enable accurate computerized navigation resection of simulated soft tissue tumors: a static cadaveric model pilot study. J Surg Oncol 118(3):510–517. https://doi.org/10.1002/jso.25155

    Article  PubMed  Google Scholar 

  22. Anderson SD (2006) Practical light embalming technique for use in the surgical fresh tissue dissection laboratory. Clin Anat 19(1):8–11. https://doi.org/10.1002/ca.20216

    Article  PubMed  Google Scholar 

  23. Conrad EU III, Ng V, Weisstein J, Lisle J, Sternheim A, Malawer MM (2016) In: Mallawer MM, Wittig JC, Bickels J, Wiesel SW (eds) Operative techniques in orthopaedic surgical oncology, 2nd edn. Wolters Kluwer, Philadelphia, pp 197–216

  24. Chhapola V, Kanwal SK, Brar R (2015) Reporting standards for Bland–Altman agreement analysis in laboratory research: a cross-sectional survey of current practice. Ann Clin Biochem 52(pt 3):382–386. https://doi.org/10.1177/0004563214553438

    Article  PubMed  Google Scholar 

  25. Giavarina D (2015) Understanding Bland–Altman analysis. Biochemia Med 25(2):141–151. https://doi.org/10.11613/BM.2015.015

    Article  Google Scholar 

  26. Biazzo A, De Paolis M (2016) Multidisciplinary approach to osteosarcoma. Acta Orthop Belg 82(4):690–698

    CAS  PubMed  Google Scholar 

  27. He F, Zhang W, Shen Y et al (2016) Effects of resection margins on local recurrence of osteosarcoma in extremity and pelvis: systematic review and meta-analysis. Int J Surg Lond Engl 36(pt A):283–292. https://doi.org/10.1016/j.ijsu.2016.11.016

    Article  Google Scholar 

  28. Whelan JS, Davis LE (2018) Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol 36(2):188–193. https://doi.org/10.1200/JCO.2017.75.1743

    Article  CAS  PubMed  Google Scholar 

  29. Guder WK, Hardes J, Nottrott M et al (2020) Pelvic Ewing sarcoma: a retrospective outcome analysis of 104 patients who underwent pelvic tumor resection at a single supra-regional center. J Orthop Surg 15(1):534. https://doi.org/10.1186/s13018-020-02028-3

    Article  Google Scholar 

  30. Guo W, Sun X, Ji T et al (2012) Outcome of surgical treatment of pelvic osteosarcoma. J Surg Oncol 106(4):406–410. https://doi.org/10.5704/MOJ.1303.018

    Article  PubMed  Google Scholar 

  31. Guo Z, Li J, Pei G-X et al (2010) Pelvic reconstruction with a combined hemipelvic prostheses after resection of primary malignant tumor. Surg Oncol 19(2):95–105. https://doi.org/10.1016/j.suronc.2009.04.003

    Article  PubMed  Google Scholar 

  32. Parry MC, Laitinen M, Albergo J et al (2016) Osteosarcoma of the pelvis. Bone Joint J 98-B(4):555–563. https://doi.org/10.1302/0301-620X.98B4.36583

    Article  CAS  PubMed  Google Scholar 

  33. Cartiaux O, Banse X, Paul L et al (2013) Computer-assisted planning and navigation improves cutting accuracy during simulated bone tumor surgery of the pelvis. Comput Aided Surg 18(1–2):19–26. https://doi.org/10.3109/10929088.2012.744096

    Article  PubMed  Google Scholar 

  34. Wong K-C, Kumta S-M (2014) Use of computer navigation in orthopedic oncology. Curr Surg Rep 2(4):47. https://doi.org/10.1007/s40137-014-0047-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Young PS, Bell SW, Mahendra A (2015) The evolving role of computer-assisted navigation in musculoskeletal oncology. Bone Joint J 97-B(2):258–264. https://doi.org/10.1302/0301-620X.97B2.34461

    Article  CAS  PubMed  Google Scholar 

  36. Fujiwara T, Kunisada T, Takeda K et al (2018) Intraoperative O-arm-navigated resection in musculoskeletal tumors. J Orthop Sci 23(6):1045–1050. https://doi.org/10.1016/j.jos.2018.06.012

    Article  PubMed  Google Scholar 

  37. Ritacco LE, Milano FE, Farfalli GL et al (2013) Accuracy of 3-D planning and navigation in bone tumor resection. Orthop 36(7):e942–e950. https://doi.org/10.3928/01477447-20130624-27

    Article  Google Scholar 

  38. Wong KC, Kumta SM (2013) Computer-assisted tumor surgery in malignant bone tumors. Clin Orthop Relat Res 471(3):750–761. https://doi.org/10.1007/s11999-012-2557-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contributions of Dr. Robert Acland who helped found the University of Louisville, School of Medicine’s fresh tissue dissection laboratory.

Funding

Fisher–Owen Grant Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Zamora.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest related to this research study.

Ethical approval

The University Medical Institutional Review Board deemed this research study which used cadaveric specimens to be exempt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitaker, J., Are, T., Edwards, C. et al. Computerized surgical navigation resection of pelvic region simulated bone tumors using skin fiducial marker registration: an in vitro cadaveric study. Eur J Orthop Surg Traumatol (2024). https://doi.org/10.1007/s00590-024-03978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00590-024-03978-8

Keywords

Navigation