Skip to main content
Log in

Evaluating femoral graft placement using three-dimensional magnetic resonance imaging in the reconstruction of the anterior cruciate ligament via independent or transtibial drilling techniques: a retrospective cohort study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

Anterior cruciate ligament (ACL) reconstruction is a common surgical procedure, yet failure still largely occurs due to nonanatomically positioned grafts. The purpose of this study was to retrospectively evaluate patients with torn ACLs before and after reconstruction via 3D MRI and thereby assess the accuracy of graft position on the femoral condyle.

Methods

Forty-one patients with unilateral ACL tears were recruited. Each patient underwent 3D MRI of both knees before and after surgery. The location of the reconstructed femoral footprint relative to the patient’s native footprint was compared.

Results

Native ACL anatomical location of the native ACL had a significant impact on graft position. Native ACLs that were previously more anterior yielded grafts that were more posterior (3.70 ± 1.22 mm, P = 0.00018), and native ACL that were previously more proximal yielded grafts that were more distal (3.25 ± 1.09 mm, P = 0.0042). Surgeons using an independent drilling method positioned 76.2% posteriorly relative to the native location, with a mean 0.1 ± 2.8 mm proximal (P = 0.8362) and 1.8 ± 3.0 mm posterior (P = 0.0165). Surgeons using a transtibial method positioned 75% proximal relative to the native location, with a mean 2.2 ± 3.0 mm proximal (P = 0.0042) and 0.2 ± 2.6 mm posterior (P = 0.8007). These two techniques showed a significant difference in magnitude in the distal–proximal axis (P = 0.0332).

Conclusion

The femoral footprint position differed between the native and reconstructed ACLs, suggesting that ACL reconstructions are not accurate. Rather, they are converging to a normative reference point that is neither anatomical nor isometric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gottlob CA, Baker JC, Pellissier JM, Colvin L (1999) Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res 367:272–282

    Article  Google Scholar 

  2. Spindler KP, Wright RW (2008) Anterior cruciate ligament tear. N Engl J Med 359(20):2135–2142. https://doi.org/10.1056/NEJMcp0804745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson AF, Snyder RB, Lipscomb AB (2001) Anterior cruciate ligament reconstruction: a prospective randomized study of three surgical methods. Am J Sports Med 29(3):272–279. https://doi.org/10.1177/03635465010290030201

    Article  CAS  PubMed  Google Scholar 

  4. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606. https://doi.org/10.1136/bjsm.2010.076364

    Article  PubMed  Google Scholar 

  5. Bedi A, Altchek DW (2009) The “footprint” anterior cruciate ligament technique: an anatomic approach to anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg 25(10):1128–1138. https://doi.org/10.1016/j.arthro.2009.03.008

    Article  Google Scholar 

  6. Freedman KB, D’Amato MJ, Nedeff DD, Kaz A, Bach BR (2003) Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31(1):2–11. https://doi.org/10.1177/03635465030310011501

    Article  PubMed  Google Scholar 

  7. Aune AK, Holm I, Risberg MA, Jensen HK, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction: a randomized study with two-year follow-up. Am J Sports Med 29(6):722–728. https://doi.org/10.1177/03635465010290060901

    Article  CAS  PubMed  Google Scholar 

  8. Barrett GR, Noojin FK, Hartzog CW, Nash CR (2002) Reconstruction of the anterior cruciate ligament in females. Arthrosc J f Arthrosc Relat Surg 18(1):46–54. https://doi.org/10.1053/jars.2002.25974

    Article  Google Scholar 

  9. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthrosc J Arthrosc Relat Surg 23(11):1218–1225. https://doi.org/10.1016/j.arthro.2007.09.008

    Article  Google Scholar 

  10. Farrow LD, Chen MR, Cooperman DR, Victoroff BN, Goodfellow DB (2007) Morphology of the femoral intercondylar notch. JBJS 89(10):2150–2155. https://doi.org/10.2106/JBJS.F.01191

    Article  Google Scholar 

  11. Anderson MJ, Browning WM III, Urband CE, Kluczynski MA, Bisson LJ (2016) A systematic summary of systematic reviews on the topic of the anterior cruciate ligament. Orthop J Sports Med 4(3):2325967116634074. https://doi.org/10.1177/2325967116634074

    Article  PubMed  PubMed Central  Google Scholar 

  12. Edwards A, Bull AM, Amis AA (2007) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 15(12):1414–1421. https://doi.org/10.1007/s00167-007-0417-6

    Article  PubMed  Google Scholar 

  13. Edwards A, Bull AM, Amis AA (2008) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 16(1):29–36. https://doi.org/10.1007/s00167-007-0410-0

    Article  PubMed  Google Scholar 

  14. van Eck CF, Kopf S, Irrgang JJ, Blankevoort L, Bhandari M, Fu FH, Poolman RW (2012) Single-bundle versus double-bundle reconstruction for anterior cruciate ligament rupture: a meta-analysis—does anatomy matter? Arthrosc J Arthrosc Relat Surg 28(3):405–424. https://doi.org/10.1016/j.arthro.2011.11.021

    Article  Google Scholar 

  15. Cain JE, Clancy JW (2002) Anatomic endoscopic anterior cruciate ligament reconstruction with patella tendon autograft. Orthop Clin North Am 33(4):717–725. https://doi.org/10.1016/s0030-5898(02)00026-3

    Article  PubMed  Google Scholar 

  16. Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS (2015) Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 23(3):640–648. https://doi.org/10.1007/s00167-014-3209-9

    Article  PubMed  Google Scholar 

  17. Fu FH, Jordan SS (2007) The lateral intercondylar ridge—a key to anatomic anterior cruciate ligament reconstruction. JBJS. https://doi.org/10.2106/JBJS.G.00851

    Article  Google Scholar 

  18. Sadoghi P, Kröpfl A, Jansson V, Müller PE, Pietschmann MF, Fischmeister MF (2011) Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg 27(3):355–364. https://doi.org/10.1016/j.arthro.2010.08.015

    Article  Google Scholar 

  19. Lo IK, de Maat GH, Valk JW, Frank CB (1999) The gross morphology of torn human anterior cruciate ligaments in unstable knees. Arthrosc J Arthrosc Relat Surg 15(3):301–306. https://doi.org/10.1016/s0749-8063(99)70039-3

    Article  CAS  Google Scholar 

  20. Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C (2010) Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med 38(10):1987–1996. https://doi.org/10.1177/0363546510372797

    Article  PubMed  Google Scholar 

  21. Morgan JA, Dahm D, Levy B, Stuart MJ, Group MS (2012) Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 25(5):361 https://doi.org/10.1055/s-0031-1299662

  22. Xerogeanes JW, Hammond KE, Todd DC (2012) Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: an MRI-based study. JBJS 94(3):268–276. https://doi.org/10.2106/JBJS.J.01813

    Article  Google Scholar 

  23. Hutchinson MR, Ash SA (2003) Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy 19(9):931–935. https://doi.org/10.1016/j.arthro.2003.09.002

    Article  PubMed  Google Scholar 

  24. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219. https://doi.org/10.1007/s00167-008-0709-5

    Article  PubMed  Google Scholar 

  25. Hart A, Han Y, Martineau PA (2015) The apex of the deep cartilage: a landmark and new technique to help identify femoral tunnel placement in anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg 31(9):1777–1783. https://doi.org/10.1016/j.arthro.2015.03.026

    Article  Google Scholar 

  26. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SLY (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthrosc J Arthrosc Relat Surg 19(3):297–304. https://doi.org/10.1053/jars.2003.50084

    Article  Google Scholar 

  27. Ducsharm M, Banaszek D, Hesse D, Kunz M, Reifel C, Bardana D (2014) Assessing the accuracy of femoral tunnel placement in anatomic ACL reconstruction (913.13). FASEB J 28(1_supplement):913–1013. https://doi.org/10.1096/fasebj.28.1_supplement.913.13

    Article  Google Scholar 

  28. Han Y, Hart A, Martineau PA (2014) Is the clock face an accurate, precise, and reliable measuring tool for anterior cruciate ligament reconstruction? Arthrosc J Arthrosc Relat Surg 30(7):849–855. https://doi.org/10.1016/j.arthro.2014.03.007

    Article  Google Scholar 

  29. Fu FH (2008) The clock-face reference: simple but nonanatomic. Arthrosc J Arthrosc Relat surg 24(12):1433. https://doi.org/10.1016/j.arthro.2008.09.003

    Article  Google Scholar 

  30. Kaseta MK, DeFrate LE, Charnock BL, Sullivan RT, Garrett WE (2008) Reconstruction technique affects femoral tunnel placement in ACL reconstruction. Clin Orthop Relat Res 466(6):1467–1474. https://doi.org/10.1007/s11999-008-0238-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113. https://doi.org/10.1177/0363546510377399

    Article  PubMed  Google Scholar 

  32. Hart A, Sivakumaran T, Burman M, Powell T, Martineau PA (2018) A prospective evaluation of femoral tunnel placement for anatomic anterior cruciate ligament reconstruction using 3-dimensional magnetic resonance imaging. Am J Sports Med 46(1):192–199. https://doi.org/10.1177/0363546517730577

    Article  PubMed  Google Scholar 

  33. Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA (2012) Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20(5):986–995. https://doi.org/10.1007/s00167-011-1690-y

    Article  PubMed  Google Scholar 

  34. Kijowski R, Davis KW, Woods MA, Lindstrom MJ, De Smet AA, Gold GE, Busse RF (2009) Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 252(2):486–495. https://doi.org/10.1148/radiol.2523090028

    Article  PubMed  Google Scholar 

  35. Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior–posterior laxity patterns. Knee Surg Sports Traumatol Arthrosc 13(2):92–100. https://doi.org/10.1007/s00167-004-0541-5

    Article  PubMed  Google Scholar 

  36. Giron F, Cuomo P, Aglietti P, Bull AM, Amis AA (2006) Femoral attachment of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14(3):250–256. https://doi.org/10.1007/s00167-005-0685-y

    Article  PubMed  Google Scholar 

  37. Piefer JW, Pflugner TR, Hwang MD, Lubowitz JH (2012) Anterior cruciate ligament femoral footprint anatomy: systematic review of the 21st century literature. Arthroscopy 28(6):872–881. https://doi.org/10.1016/j.arthro.2011.11.026

    Article  PubMed  Google Scholar 

  38. Siebold R, Axe J, Irrgang JJ, Li K, Tashman S, Fu FH (2010) A computerized analysis of femoral condyle radii in ACL intact and contralateral ACL reconstructed knees using 3D CT. Knee Surg Sports Traumatol Arthrosc 18(1):26–31. https://doi.org/10.1007/s00167-009-0969-8

    Article  PubMed  Google Scholar 

  39. Scanlan SF, Lai J, Donahue JP, Andriacchi TP (2012) Variations in the three-dimensional location and orientation of the ACL in healthy subjects relative to patients after transtibial ACL reconstruction. J Orthop Res 30(6):910–918. https://doi.org/10.1002/jor.22011

    Article  PubMed  Google Scholar 

  40. Lubowitz JH (2014) Anatomic ACL reconstruction produces greater graft length change during knee range-of-motion than transtibial technique. Knee Surg Sports Traumatol Arthrosc 22(5):1190–1195. https://doi.org/10.1007/s00167-013-2694-6

    Article  PubMed  Google Scholar 

  41. Markolf KL, Park S, Jackson SR, McAllister DR (2009) Anterior-posterior and rotatory stability of single and double-bundle anterior cruciate ligament reconstructions. JBJS 91(1):107–118. https://doi.org/10.2106/JBJS.G.01215

    Article  Google Scholar 

  42. Riboh JC, Hasselblad V, Godin JA, Mather RC III (2013) Transtibial versus independent drilling techniques for anterior cruciate ligament reconstruction: a systematic review, meta-analysis, and meta-regression. Am J Sports Med 41(11):2693–2702. https://doi.org/10.1177/0363546513506979

    Article  PubMed  Google Scholar 

  43. Dhawan A, Gallo RA, Lynch SA (2016) Anatomic tunnel placement in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 24(7):443–454. https://doi.org/10.5435/JAAOS-D-14-00465

    Article  PubMed  Google Scholar 

  44. Kato Y, Ingham SJ, Kramer S, Smolinski P, Saito A, Fu FH (2010) Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Knee Surg Sports Traumatol Arthrosc 18(1):2–10. https://doi.org/10.1007/s00167-009-0916-8

    Article  PubMed  Google Scholar 

  45. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE, Mcmahon PJ, Fu FH (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33(5):712–718. https://doi.org/10.1177/0363546504271747

    Article  PubMed  Google Scholar 

  46. Dabirrahmani D, Hogg MC, Walker P, Biggs D, Gillies RM (2013) Comparison of isometric and anatomical graft placement in synthetic ACL reconstructions: a pilot study. Comput Biol Med 43(12):2287–2296. https://doi.org/10.1016/j.compbiomed.2013.10.008

    Article  PubMed  Google Scholar 

  47. Kernkamp W, Varady N, Li J, Tsai T, Asnis P, Nelissen R, Gill T, de Velde VS, Li G (2018) An in vivo prediction of anisometry and strain in anterior cruciate ligament reconstruction-a combined magnetic resonance and dual fluoroscopic imaging analysis. Arthrosc J Arthrosc Relat Surg. https://doi.org/10.1016/j.arthro.2017.10.042

    Article  Google Scholar 

  48. Zavras T, Race A, Bull A, Amis A (2001) A comparative study of’isometric’points for anterior cruciate ligament graft attachment. Knee Surg Sports Traumatol Arthrosc 9(1):28–33. https://doi.org/10.1007/s001670000170

    Article  CAS  PubMed  Google Scholar 

  49. Friederich N, O’Brien W (1992) Functional anatomy of the cruciate ligaments. In: The knee and the cruciate ligaments. Springer, pp 78–91

  50. Hefzy MS, Grood ES, Noyes FR (1989) Factors affecting the region of most isometric femoral attachments: part II: the anterior cruciate ligament. Am J Sports Med 17(2):208–216. https://doi.org/10.1177/036354658901700210

    Article  CAS  PubMed  Google Scholar 

  51. Sidles JA, Larson RV, Garbini JL, Downey DJ, Matsen FA (1988) Ligament length relationships in the moving knee. J Orthop Res 6(4):593–610. https://doi.org/10.1002/jor.1100060418

    Article  CAS  PubMed  Google Scholar 

  52. Pearle AD, Shannon FJ, Granchi C, Wickiewicz TL, Warren RF (2008) Comparison of 3-dimensional obliquity and anisometric characteristics of anterior cruciate ligament graft positions using surgical navigation. Am J Sports Med 36(8):1534–1541. https://doi.org/10.1177/0363546508315536

    Article  PubMed  Google Scholar 

  53. Markolf KL, Burchfield DM, Shapiro MM, Davis BR, Finerman GA, Slauterbeck JL (1996) Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft: part I insertion of the graft and anterior-posterior testing. JBJS 78(11):1720–1727. https://doi.org/10.2106/00004623-199611000-00013

    Article  CAS  Google Scholar 

  54. Pearle A, McAllister D, Howell S (2015) Rationale for strategic graft placement in anterior cruciate ligament reconstruction: IDEAL femoral tunnel position. Am J Orthop 44(6):253–258

    PubMed  Google Scholar 

  55. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL-Y (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666. https://doi.org/10.1177/03635465020300050501

    Article  PubMed  Google Scholar 

  56. Lu W, Zhu W, Peng L, Fen W, Li H, Ou Y, Liu H, Wang D, Zeng Y (2015) Femoral footprint variation of the posterolateral bundle of the anterior cruciate ligament and double-bundle reconstruction. Knee 22(3):169–173. https://doi.org/10.1016/j.knee.2014.10.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Janet Faith who was the research coordinator, Lyne Santello for coordinating MRI, and Dr Eric Lenczner, Dr Mark Burman and Dr Robert Marien for participating in this study.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AH, PAM, and MB contributed to study conception and design; AH contributed to data acquisition; CL contributed to analysis and data interpretation; and CL, MT, and JL contributed to manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jack Legler.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent data

The McGill Institutional Review Board approved the study, and consent was obtained by the research investigator.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legler, J., Laverdiere, C., Boily, M. et al. Evaluating femoral graft placement using three-dimensional magnetic resonance imaging in the reconstruction of the anterior cruciate ligament via independent or transtibial drilling techniques: a retrospective cohort study. Eur J Orthop Surg Traumatol 34, 1297–1306 (2024). https://doi.org/10.1007/s00590-023-03788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-023-03788-4

Keywords

Navigation