Skip to main content

Advertisement

Log in

Anterior femoral notching ≥ 3 mm is associated with increased risk for supracondylar periprosthetic femoral fracture after total knee arthroplasty: a systematic review and meta-analysis

  • General Review
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

Anterior femoral notching (AFN) may be associated with a higher risk for supracondylar periprosthetic fracture (sPPF) after total knee arthroplasty (TKA), although studies have yielded inconclusive results. We aimed to systematically investigate and meta-analyze the best available evidence regarding the association between AFN and the risk of sPPF after TKA.

Methods

A comprehensive search of PubMed, Scopus, Mendeley, Google Scholar and Cochrane databases was performed, from conception to February 29, 2020. Data were expressed as odds ratio (OR) with 95% confidence intervals (CI). I2-index was employed for heterogeneity. Newcastle–Ottawa scale was implemented for quality assessment of the included studies.

Results

Nine studies fulfilled the eligibility criteria, including a total of 3264 patients subjected to TKA. Among them, there were 150 patients who sustained a sPPF. Overall, patients exposed to AFN (AFN group) demonstrated an increased risk for sPPF compared to those not exposed (control group) (OR 3.91, 95% CI 1.22–12.58, p = 0.02; I2 68.52%). Subgroup analysis based on AFN depth with a cut-off value of 3 mm further clarified this association. Patients with AFN ≥ 3mm were at higher risk for sPPF compared to patients with AFN < 3 mm and control group (OR 4.85, 95% CI 2.08–11.33, p = 0.00; I2 0.0%). On the contrary, fracture risk was not significant for patients with AFN < 3 mm compared to the control group (OR 5.0, 95% CI 0.44–56.82, p = 0.19; I2 42.99%).

Conclusion

Patients, exposed to AFN ≥ 3 mm in depth, are at higher risk for sustaining a sPPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matsumoto H, Okuno M, Nakamura T, Yamamoto K, Hagino H (2012) Fall incidence and risk factors in patients after total knee arthroplasty. Arch Orthop Trauma Surg 132:555–563. https://doi.org/10.1007/s00402-011-1418-y

    Article  PubMed  Google Scholar 

  2. Lizaur-Utrilla A, Miralles-Muñoz FA, Sanz-Reig J (2013) Functional outcome of total knee arthroplasty after periprosthetic distal femoral fracture. J Arthroplasty 28:1585–1588. https://doi.org/10.1016/j.arth.2013.03.007

    Article  PubMed  Google Scholar 

  3. Ehlinger M, Adam P, Abane L, Rahme M, Moor BK, Arlettaz Y, Bonnomet F (2011) Treatment of periprosthetic femoral fractures of the knee. Knee Surg Sports Traumatol Arthrosc 19:1473–1478. https://doi.org/10.1007/s00167-011-1480-6

    Article  PubMed  Google Scholar 

  4. Parvizi J, Jain N, Schmidt AH (2008) Periprosthetic knee fractures. J Orthop Trauma 22:663–671. https://doi.org/10.1097/BOT.0b013e31816ed989

    Article  PubMed  Google Scholar 

  5. Canton G, Ratti C, Fattori R, Hoxhaj B, Murena L (2017) Periprosthetic knee fractures. A review of epidemiology, risk factors, diagnosis, management and outcome. Acta Biomed 88:118–128. https://doi.org/10.23750/abm.v88i2-S.6522

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zainul-Abidin S, Lim BTJ, Bin-Abdrazak HR, Gatot C, Allen JC, Koh JSB, Howe TS (2019) Periprosthetic fractures after total knee arthroplasty: The influence of pre-operative mechanical factors versus intraoperative factors. Malays Orthop J 13:28–34. https://doi.org/10.5704/MOJ.1907.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim JBT, Bin Abd Razak HR, Zainul-Abidin S, Allen JC, Koh JSB, Sen HT (2017) What are the preoperative outcome measures that predispose to periprosthetic fractures after primary total knee arthroplasty? J Arthroplasty 32:2531–2534. https://doi.org/10.1016/j.arth.2017.03.013

    Article  PubMed  Google Scholar 

  8. Kyriakidis T, Kenanidis E, Akula MR, Zorman D, Tsiridis E (2019) Locking plates versus retrograde intramedullary nails in the treatment of periprosthetic supracondylar knee fractures A retrospective multicenter comparative study. Injury 50:1745–1749. https://doi.org/10.1016/j.injury.2019.04.019

    Article  PubMed  Google Scholar 

  9. Minarro JC, Urbano-Luque MT, López-Jordán A, López-Pulido MJ, González-Fernández Á, Delgado-Martínez AD (2018) Is the fracture pattern in periprosthetic fractures around the knee related with the anterior femoral notch? J Clin Orthop Trauma 9:289–291. https://doi.org/10.1016/j.jcot.2017.10.001

    Article  PubMed  Google Scholar 

  10. Ritter MA, Thong AE, Keating EM, Faris PM, Meding JB, Berend ME, Pierson JL, Davis KE (2005) The effect of femoral notching during total knee arthroplasty on the prevalence of postoperative femoral fractures and on clinical outcome. J Bone Joint Surg Am 87:2411–2414. https://doi.org/10.2106/JBJS.D.02468

    Article  PubMed  Google Scholar 

  11. Hoffmann MF, Jones CB, Sietsema DL, Koenig SJ, Tornetta P 3rd (2012) Outcome of periprosthetic distal femoral fractures following knee arthroplasty. Injury 43:1084–1089. https://doi.org/10.1016/j.injury.2012.01.025

    Article  CAS  PubMed  Google Scholar 

  12. Aaron RK, Scott R (1987) Supracondular Fracture of the Femur After Total Knee Arthroplasty. Clin Orthop Relat Res 219:136–139

    Article  Google Scholar 

  13. Hirsh DM, Bhalla S, Roffman M (1981) Supracondylar fracture of the femur following total knee replacement. report of four cases. J Bone Joint Surg Am 63:162–163

    Article  CAS  Google Scholar 

  14. Scott RD (1988) Anterior femoral notching and ipsilateral supracondylar femur fracture in total knee arthroplasty. J Arthroplasty 3:381. https://doi.org/10.1016/S0883-5403(88)80042-1

    Article  CAS  PubMed  Google Scholar 

  15. Culp RW, Schmidt RG, Hanks G, Mak A, Esterhai JLJ, Heppenstall RB (1987) Supracondylar fracture of the femur following prosthetic knee arthroplasty. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-198709000-00029

    Article  PubMed  Google Scholar 

  16. Shekhar A, Chandra Krishna C, Patil S, Tapasvi S (2020) Does increased femoral component size options reduce anterior femoral notching in total knee replacement? J Clin Orthop trauma 11:S223–S227. https://doi.org/10.1016/j.jcot.2019.03.006

    Article  PubMed  Google Scholar 

  17. Kawahara S, Mawatari T, Iwamoto Y, Banks SA (2016) Femoral sizer design can increase anterior notching during total knee arthroplasty. Knee 23:890–894. https://doi.org/10.1016/j.knee.2015.11.009

    Article  PubMed  Google Scholar 

  18. Lee JH, Wang S-I (2015) Risk of anterior femoral notching in navigated total knee arthroplasty. Clin Orthop Surg 7:217–224. https://doi.org/10.4055/cios.2015.7.2.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lesh ML, Schneider DJ, Deol G, Davis B, Jacobs CR, Pellegrini J (2000) The consequences of anterior femoral notching in total knee arthroplasty: a biomechanical study. J Bone Joint Surg Am 82:1096–1101. https://doi.org/10.2106/00004623-200008000-00005

    Article  CAS  PubMed  Google Scholar 

  20. Shawen SB, Belmont PJJ, Klemme WR, Topoleski LDT, Xenos JS, Orchowski JR (2003) Osteoporosis and anterior femoral notching in periprosthetic supracondylar femoral fractures: a biomechanical analysis. J Bone Joint Surg Am 85:115–121. https://doi.org/10.2106/00004623-200301000-00018

    Article  PubMed  Google Scholar 

  21. Zalzal P, Backstein D, Gross AE, Papini M (2006) Notching of the anterior femoral cortex during total knee arthroplasty characteristics that increase local stresses. J Arthroplasty 21:737–743. https://doi.org/10.1016/j.arth.2005.08.020

    Article  PubMed  Google Scholar 

  22. Puranik HG, Mukartihal R, Patil SS, Dhanasekaran SR, Menon VK (2019) Does femoral notching during total knee arthroplasty influence periprosthetic fracture. A Prospective Study. J Arthroplasty 34:1244–1249. https://doi.org/10.1016/j.arth.2019.02.034

    Article  PubMed  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wells G, Shea B, O’Connell D, Peterson je, Welch V, Losos M, Tugwell P (2000) The newcastle–ottawa scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp Accessed 1 April 2020

  25. Gujarathi N, Putti AB, Abboud RJ, MacLean JGB, Espley AJ, Kellett CF (2009) Risk of periprosthetic fracture after anterior femoral notching: A 9-year follow-up of 200 total knee arthroplasties. Acta Orthop 80:553–556. https://doi.org/10.3109/17453670903350099

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ritter MA, Faris PM, Keating EM (1988) Anterior femoral notching and ipsilateral supracondylar femur fracture in total knee arthroplasty. J Arthroplasty 3:185–187. https://doi.org/10.1016/S0883-5403(88)80085-8

    Article  CAS  PubMed  Google Scholar 

  27. Hernigou P, Mathieu G, Filippini P, Demoura A (2006) Facteurs du risque de fracture du fémur distal dans les protheses totales du genou: Etude de 32 fractures per et postopératoires [Intra- and postoperative fractures of the femur in total knee arthroplasty: risk factors in 32 cases]. Rev Chir Orthop Reparatrice Appar Mot 92:140–147. https://doi.org/10.1016/S0035-1040(06)75699-9

    Article  CAS  PubMed  Google Scholar 

  28. McGraw P, Kumar A (2010) Periprosthetic fractures of the femur after total knee arthroplasty. J Orthop Traumatol 11:135–141. https://doi.org/10.1007/s10195-010-0099-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuzyk PRT, Watts E, Backstein D (2017) Revision total knee arthroplasty for the management of periprosthetic fractures. J Am Acad Orthop Surg 25:624–633. https://doi.org/10.5435/JAAOS-D-15-00680

    Article  PubMed  Google Scholar 

  30. Johnston AT, Tsiridis E, Eyres KS, Toms AD (2012) Periprosthetic fractures in the distal femur following total knee replacement: a review and guide to management. Knee 19:156–162. https://doi.org/10.1016/j.knee.2011.06.003

    Article  PubMed  Google Scholar 

  31. Completo A, Fonseca F, Relvas C, Ramos A, Simoes JA (2012) Improved stability with intramedullary stem after anterior femoral notching in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20:487–494. https://doi.org/10.1007/s00167-011-1557-2

    Article  CAS  PubMed  Google Scholar 

  32. Jethanandani R, Patwary MB, Shellito AD, Meehan JP, Amanatullah DF (2016) Biomechanical consequences of anterior femoral notching in cruciate-retaining versus posterior-stabilized total knee arthroplasty. Am J Orthop (Belle Mead NJ) 45:E268-272

    Google Scholar 

  33. Rhee SJ, Cho JY, Choi YY, Sawaguchi T, Suh JT (2018) Femoral periprosthetic fractures after total knee arthroplasty: new surgically oriented classification with a review of current treatments. Knee Surg Relat Res 30:284–292. https://doi.org/10.5792/ksrr.17.036

    Article  PubMed  PubMed Central  Google Scholar 

  34. Prince JM, Bernatz JT, Binkley N, Abdel MP, Anderson PA (2019) Changes in femoral bone mineral density after total knee arthroplasty: a systematic review and meta-analysis. Arch Osteoporos 14:23. https://doi.org/10.1007/s11657-019-0572-7

    Article  PubMed  Google Scholar 

  35. Bernatz JT, Krueger DC, Squire MW, Illgen RL 2nd, Binkley NC, Anderson PA (2019) Unrecognized osteoporosis is common in patients with a well-functioning total knee arthroplasty. J Arthroplasty 34:2347–2350. https://doi.org/10.1016/j.arth.2019.05.041

    Article  PubMed  Google Scholar 

  36. Tsiridis E, Gamie Z, Conaghan PG, Giannoudis PV (2007) Biological options to enhance periprosthetic bone mass. Injury 38:704–713. https://doi.org/10.1016/j.injury.2007.02.051

    Article  CAS  PubMed  Google Scholar 

  37. Mehdipour S, Qoreishi M, Keipourfard A (2020) Comparison of clinical, functional, and radiological outcomes of total knee arthroplasty using conventional and patient-specific instrumentation. Arch bone Jt Surg 8:625–632. https://doi.org/10.22038/abjs.2020.41571.2124

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89:780–785. https://doi.org/10.2106/JBJS.F.00222

    Article  PubMed  Google Scholar 

  39. Ko JH, Han CD, Shin KH, Nguku L, Yang IH, Lee WS, Il KK, Park KK (2016) Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24:2476–2482. https://doi.org/10.1007/s00167-015-3863-6

    Article  PubMed  Google Scholar 

  40. Matz J, Lanting BA, Howard JL (2019) Understanding the patellofemoral joint in total knee arthroplasty. Can J Surg 62:57–65. https://doi.org/10.1503/cjs.001617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

D.S., N.K.G. and K.A. contributed to the study conception and design, reviewed the literature, extracted and analyzed the data. N.K.G. was responsible for statistical analysis, with further contribution from D.S., K.A. and S.S.; D.S. wrote the first draft of the manuscript with further contribution from N.K.G., K.A. and S.S.; E.K. and P.A. reviewed the initial manuscript, providing critical scientific input and resolved disagreements regarding study selection and quality assessment. I.S., M.P., L.P. and E.T. reviewed the final draft and provided critical scientific input.

Corresponding author

Correspondence to Dimitrios Stamiris.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Availability of data and material

Data can be provided upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 93 kb)

Supplementary file2 (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamiris, D., Gkekas, N.K., Asteriadis, K. et al. Anterior femoral notching ≥ 3 mm is associated with increased risk for supracondylar periprosthetic femoral fracture after total knee arthroplasty: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 32, 383–393 (2022). https://doi.org/10.1007/s00590-021-02989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-021-02989-z

Keywords

Navigation