Skip to main content

Advertisement

Log in

Is rotation the mode of failure in pertrochanteric fractures fixed with nails? Theoretical approach and illustrative cases

  • Expert's Opinion • HIP - FRACTURES
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

The present article reviews data from biomechanical and clinical studies which indicate that rotational instability can cause failure of fixation due to the particular characteristics of the fracture, the mechanical properties of the chosen implant or flaws in surgical technique.

Methods

Although radiographs give a similar impression in failure of fractures fixed with cephalomedullary nails, different mechanisms involving rotation of the femoral head may play a key role.

Results

The incidence of failure in pertrochanteric fracture fixation is decreasing as implants continue to evolve. It is possible that currently reported low failure rates do not apply equally to all subtypes of this diverse group of fractures. Since the introduction of sliding hip screws, “cut-out” due to varus collapse of the proximal fracture fragment has been the only reported mode of failure.

Conclusion

Excessive rotation leading to eventual “cut-out” has not been adequately studied, and thus, available evidence is not sufficient to definitely prove this theoretical approach. As nailing is gradually overtaking extramedullary fixation as the treatment of choice, especially for comminuted pertrochanteric fractures which can be rotationally unstable, further research is warranted to improve our understanding of the pathogenetic mechanisms of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jensen JS (1980) Classification of trochanteric fractures. Acta Orthop Scand 51:803–810

    CAS  PubMed  Google Scholar 

  2. Wu CC, Shih CH (1991) Biomechanical analysis of the dynamic hip screw in the treatment of intertrochanteric fractures. Arch Orthop Trauma Surg 110:307–310

    CAS  PubMed  Google Scholar 

  3. Wolfgang GL, Bryant MH, O’Neill JP (1982) Treatment of intertrochanteric fracture of the femur using sliding screw plate fixation. Clin Orthop Relat Res 163:148–158

    Google Scholar 

  4. Chirodian N, Arch B, Parker MJ (2005) Sliding hip screw fixation of trochanteric hip fractures: outcome of 1024 procedures. Injury 36:793–800

    CAS  PubMed  Google Scholar 

  5. Mainds CC, Newman RJ (1989) Implant failures in patients with proximal fractures of the femur treated with a sliding screw device. Injury 20:98–100

    CAS  PubMed  Google Scholar 

  6. Rao JP, Banzon MT, Weiss AB, Rayhack J (1983) Treatment of unstable intertrochanteric fractures with anatomic reduction and compression hip screw fixation. Clin Orthop Relat Res 175:65–71

    Google Scholar 

  7. Parker MJ, Handoll HH (2008) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev 9:CD000093

    Google Scholar 

  8. Bhandari M, Schemitsch E, Jönsson A, Zlowodzki M, Haidukewych GJ (2009) Gamma nails revisited: gamma nails versus compression hip screws in the management of intertrochanteric fractures of the hip: a meta-analysis. J Orthop Trauma 23:460–464

    PubMed  Google Scholar 

  9. Anglen JO, Weinstein JN, Committee ABoOSR (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Jt Surg Am 90:700–707

    Google Scholar 

  10. Parker MJ, Bowers TR, Pryor GA (2012) Sliding hip screw versus the Targon PF nail in the treatment of trochanteric fractures of the hip: a randomised trial of 600 fractures. J Bone Jt Surg Br 94:391–397

    CAS  Google Scholar 

  11. Hardy DC, Descamps PY, Krallis P, Fabeck L, Smets P, Bertens CL (1998) Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients. J Bone Jt Surg Am 80:618–630

    CAS  Google Scholar 

  12. Palm H, Lysén C, Krasheninnikoff M, Holck K, Jacobsen S, Gebuhr P (2011) Intramedullary nailing appears to be superior in pertrochanteric hip fractures with a detached greater trochanter: 311 consecutive patients followed for 1 year. Acta Orthop 82:166–170

    PubMed  PubMed Central  Google Scholar 

  13. Utrilla AL, Reig JS, Muñoz FM, Tufanisco CB (2005) Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma 19:229–233

    PubMed  Google Scholar 

  14. Aktselis I, Kokoroghiannis C, Fragkomichalos E, Koundis G, Deligeorgis A, Daskalakis E (2014) Prospective randomised controlled trial of an intramedullary nail versus a sliding hip screw for intertrochanteric fractures of the femur. Int Orthop 38:155–161

    PubMed  Google Scholar 

  15. Matre K, Vinje T, Havelin LI, Gjertsen JE, Furnes O, Espehaug B (2013) TRIGEN INTERTAN intramedullary nail versus sliding hip screw: a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and one year of follow-up. J Bone Jt Surg Am 95:200–208

    Google Scholar 

  16. Kyle RF, Ellis TJ, Templeman DC (2005) Surgical treatment of intertrochanteric hip fractures with associated femoral neck fractures using a sliding hip screw. J Orthop Trauma 19:1–4

    PubMed  Google Scholar 

  17. Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Jt Surg Br 72:26–31

    CAS  Google Scholar 

  18. Sommers MB, Roth C, Hall H, Kam BC, Ehmke LW, Krieg JC (2004) A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma 18:361–368

    PubMed  Google Scholar 

  19. Parker MJ (1996) Trochanteric hip fractures. Fixation failure commoner with femoral medialization, a comparison of 101 cases. Acta Orthop Scand 67:329–332

    CAS  PubMed  Google Scholar 

  20. Kubiak EN, Bong M, Park SS, Kummer F, Egol K, Koval KJ (2004) Intramedullary fixation of unstable intertrochanteric hip fractures: one or two lag screws. J Orthop Trauma 18:12–17

    PubMed  Google Scholar 

  21. Kummer FJ, Schwarzkopf R, Takemoto RC, Egol KA (2011) Sliding of two lag screw designs in a highly comminuted fracture model. Bull NYU Hosp Jt Dis 69:289–291

    PubMed  Google Scholar 

  22. van Embden D, Stollenwerck GA, Koster LA, Kaptein BL, Nelissen RG, Schipper IB (2015) The stability of fixation of proximal femoral fractures: a radiostereometric analysis. Bone Jt J 97-B:391–397

    Google Scholar 

  23. Walsh ME, Wilkinson R, Stother IG (1990) Biomechanical stability of four-part intertrochanteric fractures in cadaveric femurs fixed with a sliding screw-plate. Injury 21:89–92

    CAS  PubMed  Google Scholar 

  24. Curtis MJ, Jinnah RH, Wilson V, Cunningham BW (1994) Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation. Injury 25:99–104

    CAS  PubMed  Google Scholar 

  25. Larsson S, Elloy M, Hansson LI (1988) Stability of osteosynthesis in trochanteric fractures. Comparison of three fixation devices in cadavers. Acta Orthop Scand 59:386–390

    CAS  PubMed  Google Scholar 

  26. Larsson S, Elloy M, Hansson LI (1988) Fixation of unstable trochanteric hip fractures. A cadaver study comparing three different devices. Acta Orthop Scand 59:658–663

    CAS  PubMed  Google Scholar 

  27. Born CT, Karich B, Bauer C, von Oldenburg G, Augat P (2011) Hip screw migration testing: first results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res 29:760–766

    PubMed  Google Scholar 

  28. Ehmke LW, Fitzpatrick DC, Krieg JC, Madey SM, Bottlang M (2005) Lag screws for hip fracture fixation: evaluation of migration resistance under simulated walking. J Orthop Res 23:1329–1335

    PubMed  Google Scholar 

  29. Lenich A, Bachmeier S, Prantl L, Nerlich M, Hammer J, Mayr E (2011) Is the rotation of the femoral head a potential initiation for cutting out? A theoretical and experimental approach. BMC Musculoskelet Disord 12:79

    PubMed  PubMed Central  Google Scholar 

  30. Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A (2013) Critical factors in cut-out complication after gamma nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 14:1

    PubMed  PubMed Central  Google Scholar 

  31. Massoud EI (2010) Fixation of basicervical and related fractures. Int Orthop 34:577–582

    PubMed  Google Scholar 

  32. Watson ST, Schaller TM, Tanner SL, Adams JD, Jeray KJ (2016) Outcomes of low-energy basicervical proximal femoral fractures treated with cephalomedullary fixation. J Bone Jt Surg Am 98:1097–1102

    Google Scholar 

  33. Hu SJ, Yu GR, Zhang SM (2013) Surgical treatment of basicervical intertrochanteric fractures of the proximal femur with cephalomeduallary hip nails. Orthop Surg 5:124–129

    PubMed  PubMed Central  Google Scholar 

  34. Videla-Cés M, Sales-Pérez JM, Girós-Torres J, Sánchez-Navés R, Videla S (2017) A retrospective cohort study of concomitant ipsilateral extra-capsular and intra-capsular fractures of the proximal femur. Are they casual findings or an undervalued reality? Injury 48:1558–1564

    PubMed  Google Scholar 

  35. Larsson S, Friberg S, Hansson LI (1990) Trochanteric fractures. Influence of reduction and implant position on impaction and complications. Clin Orthop Relat Res 259:130–139

    Google Scholar 

  36. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Jt Surg Am 77:1058–1064

    CAS  Google Scholar 

  37. Baumgaertner MR, Solberg BD (1997) Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Jt Surg Br 79:969–971

    CAS  Google Scholar 

  38. De Bruijn K, den Hartog D, Tuinebreijer W, Roukema G (2012) Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Jt Surg Am 94:1266–1272

    Google Scholar 

  39. Shin YS, Chae JE, Kang TW, Han SB (2017) Prospective randomized study comparing two cephalomedullary nails for elderly intertrochanteric fractures: Zimmer natural nail versus proximal femoral nail antirotation II. Injury 48:1550–1557

    PubMed  Google Scholar 

  40. Lobo-Escolar A, Joven E, Iglesias D, Herrera A (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41:1312–1316

    PubMed  Google Scholar 

  41. Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PR (2014) Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Jt J 96-B:1029–1034

    CAS  Google Scholar 

  42. Kane P, Vopat B, Heard W, Thakur N, Paller D, Koruprolu S (2014) Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Clin Orthop Relat Res 472:2492–2498

    PubMed  PubMed Central  Google Scholar 

  43. Kuzyk PR, Zdero R, Shah S, Olsen M, Waddell JP, Schemitsch EH (2012) Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma 26:414–421

    PubMed  Google Scholar 

  44. Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276

    PubMed  Google Scholar 

  45. Honkonen SE, Vihtonen K, Järvinen MJ (2004) Second-generation cephalomedullary nails in the treatment of reverse obliquity intertrochanteric fractures of the proximal femur. Injury 35:179–183

    PubMed  Google Scholar 

  46. Ciufo DJ, Zaruta DA, Lipof JS, Judd KT, Gorczyca JT, Ketz JP (2017) Risk factors associated with cephalomedullary nail cutout in the treatment of trochanteric hip fractures. J Orthop Trauma 31:583–588

    PubMed  Google Scholar 

  47. Chinzei N, Hiranaka T, Niikura T, Tsuji M, Kuroda R, Doita M (2015) Comparison of the sliding and femoral head rotation among three different femoral head fixation devices for trochanteric fractures. Clin Orthop Surg 7:291–297

    PubMed  PubMed Central  Google Scholar 

  48. Frei HC, Hotz T, Cadosch D, Rudin M, Käch K (2012) Central head perforation, or “cut through,” caused by the helical blade of the proximal femoral nail antirotation. J Orthop Trauma 26:e102–e107

    PubMed  Google Scholar 

  49. Yu W, Zhang X, Zhu X, Hu J, Liu Y (2016) A retrospective analysis of the InterTan nail and proximal femoral nail anti-rotation-Asia in the treatment of unstable intertrochanteric femur fractures in the elderly. J Orthop Surg Res 11:10

    PubMed  PubMed Central  Google Scholar 

  50. Chen CY, Chiu FY, Chen CM, Huang CK, Chen WM, Chen TH (2008) Surgical treatment of basicervical fractures of femur—a prospective evaluation of 269 patients. J Trauma 64:427–429

    PubMed  Google Scholar 

  51. Huang Y, Zhang C, Luo Y (2013) A comparative biomechanical study of proximal femoral nail (InterTAN) and proximal femoral nail antirotation for intertrochanteric fractures. Int Orthop 37:2465–2473

    PubMed  PubMed Central  Google Scholar 

  52. Hoffmann S, Paetzold R, Stephan D, Püschel K, Buehren V, Augat P (2013) Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures. J Orthop Trauma 27:483–490

    PubMed  Google Scholar 

  53. Nüchtern JV, Ruecker AH, Sellenschloh K, Rupprecht M, Püschel K, Rueger JM (2014) Malpositioning of the lag screws by 1- or 2-screw nailing systems for pertrochanteric femoral fractures: a biomechanical comparison of gamma 3 and intertan. J Orthop Trauma 28:276–282

    PubMed  Google Scholar 

  54. Johnson J, Deren M, Chambers A, Cassidy D, Koruprolu S, Born C (2019) Biomechanical analysis of fixation devices for basicervical femoral neck fractures. J Am Acad Orthop Surg 27:e41–e48

    PubMed  PubMed Central  Google Scholar 

  55. Imren Y, Gurkan V, Bilsel K (2015) Biomechanical comparison of dynamic hip screw, proximal femoral nail, cannulated screw, and monoaxial external fixation in the treatment of basicervical femoral neck fractures. Acta Chir Orthop Traumatol Cech 82:140–144

    CAS  PubMed  Google Scholar 

  56. Santoni BG, Nayak AN, Cooper SA (2016) Comparison of femoral head rotation and varus collapse between a single lag screw and integrated dual screw intertrochanteric hip fracture fixation device using a cadaveric hemi-pelvis biomechanical model. J Orthop Trauma 30:164–169

    PubMed  Google Scholar 

  57. Saarenpää I, Partanen J, Jalovaara P (2002) Basicervical fracture—a rare type of hip fracture. Arch Orthop Trauma Surg 122(2):69–72

    PubMed  Google Scholar 

  58. Hu S-J, Yu G-R, Zhang SM (2013) Surgical treatment of basicervical intertrochanteric fractures of the proximal femur with cephalomeduallary hip nails. Ortho Surg 5(2):124–129

    Google Scholar 

  59. Tan BY, Lau ACK, Kwek EBK (2015) Morphology and fixation pitfalls of a highly unstable intertrochanteric fracture variant. J Ortho Surg 23(2):141–145

    Google Scholar 

  60. Berger-Groch J, Rupprecht M, Schoepper S, SchroederM Rueger JM, Hoffmann M (2016) Fiveyear outcome analysis of intertrochanteric femur fractures: a prospective randomized trial comparing a 2-screw and a single-screw cephalomedullary nail. J Orthop Trauma 30:483–488

    PubMed  Google Scholar 

  61. Nüchtern JV, Ruecker AH, Sellenschloh K, Rupprecht M, Püschel K, Rueger JM (2014) Malpositioning of the lag screws by 1- or 2-screw nailing systems for pertrochanteric femoral fractures: a biomechanical comparison of gamma 3 and intertan. J Orthop Trauma 28:276–282

    PubMed  Google Scholar 

  62. Boukebous B, Flouzat-Lachaniette C, Donadio J, Chenguel Z, Guillon P, Rousseau M (2019) Femoral offset loss and internal arch restoration defect are correlated with intramedullary nail cut-out complications after pertrochanteric fractures: a case–control study. Eur J Orthop Surg Traumatol 19:1–9

    Google Scholar 

  63. Mavrogenis A, Panagopoulos G, Megaloikonomos P, Igoumenou V, Galanopoulos I, Vottis C, Karabinas P, Koulouvaris P, Kontogeorgakos V, Vlamis J, Papagelopoulos P (2015) Complications after hip nailing for fractures. Orthopedics 39(1):e108–e116

    PubMed  Google Scholar 

  64. Tucker A, Warnock M, McDonald S, Cusick L, Foster A (2018) Fatigue failure of the cephalomedullary nail: revision options, outcomes and review of the literature. Eur J Orthop Surg Traumatol 28(3):511–520

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokoroghiannis, C., Vasilakos, D., Zisis, K. et al. Is rotation the mode of failure in pertrochanteric fractures fixed with nails? Theoretical approach and illustrative cases. Eur J Orthop Surg Traumatol 30, 199–205 (2020). https://doi.org/10.1007/s00590-019-02557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-019-02557-6

Keywords

Navigation