Skip to main content
Log in

Posterior-stabilized versus cruciate-retained implants for total knee arthroplasty: a meta-analysis of clinical trials

  • Up-to date Review and Case Report • KNEE - ARTHROPLASTY
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Aim

A meta-analysis comparing the outcomes of patients undergoing cruciate retaining (CR) versus posterior stabilized (PS) in primary total knee arthroplasty was performed. The outcomes of interest were the Knee Society Rating System, clinical (KSCS) and functional (KSFS) subscales, joint range of motion (ROM), surgical duration and further complications (anterior knee pain, instability and revision rate).

Materials and methods

The search was conducted in July 2018, accessing the following databases: Cochrane Systematic Reviews, Scopus, PubMed, EMBASE, CINAHL, AMED and Google Scholar. We included only clinical trials level of evidence I and II. During the statistical analysis, we excluded all the studies that affect negatively the I2 test, in order to achieve more reliable results. For the methodological quality assessment we referred to the PEDro score. The risk of publication’s bias was evaluated by the funnel plots across all the comparisons.

Results

The PEDro score reported a good methodological quality assessment. The funnel plot detected a very low risk of publication’s bias. We included in this study 36 articles, counting a total of 4052 patients and 4884 procedures. The mean follow-up term for both groups was 3.39 years. The ROM resulted in an overall estimate effect of 2.18° in favor of the PS group. The overall WOMAC showed a result in favor of the PS group. The overall estimate effect of the KSCS was 0.02% higher in the CR group. The KSFS showed an overall estimate effect of 2.09% in favor of the PS group. Concerning the surgical duration, the estimate effect resulted in 6.87 min shorter in the CR group. No differences were reported across the two groups regarding anterior knee pain, knee joint instability or revision rate.

Conclusion

Both the prosthetic implants provided to be a safety and feasible solution to treat end-stage knee joint degeneration. The PS implants reported improvements in the knee range of motion and a prolongation of the surgical time. No clinically relevant dissimilarities concerning the analyzed scores were evidenced. No statistically significant relevant differences in complications were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson JG, Wixson RL, Tsai D, Stulberg SD, Chang RW (1996) Functional outcome and patient satisfaction in total knee patients over the age of 75. J Arthroplasty 11(7):831–840

    Article  CAS  Google Scholar 

  2. Jenkins PJ, Clement ND, Hamilton DF et al (2013) Predicting the cost-effectiveness of total hip and knee replacement: a health economic analysis. Bone Joint J 95B:115–121

    Article  Google Scholar 

  3. Bedair H, Cha TD, Hansen VJ (2014) Economic benefit to society at large of total knee arthroplasty in younger patients: a Markov analysis. J Bone Joint Surg Am 96(2):119–126. https://doi.org/10.2106/JBJS.L.01736

    Article  PubMed  Google Scholar 

  4. Abdel MP, Morrey ME, Jensen MR, Morrey BF (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am 93(22):2072–2078. https://doi.org/10.2106/JBJS.J.01143

    Article  PubMed  Google Scholar 

  5. Sachinis NP (2013) Posterior cruciate ligament retaining versus posterior cruciate ligament substituting knee arthroplasties: a four-decades-old debate. Hard Tissue 2(3):28

    Article  Google Scholar 

  6. Jain S, Pathak AC, Kanniyan K, Kulkarni S, Tawar S, Mane P (2013) High-flexion posterior-stabilized total knee prosthesis: Is it worth the hype? Knee Surg Relat Res 25(3):100–105. https://doi.org/10.5792/ksrr.2013.25.3.100

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bercik MJ, Joshi A, Parvizi J (2013) Posterior cruciate-retaining versus posterior-stabilized total knee arthroplasty: a meta-analysis. J Arthroplasty 28(3):439–444. https://doi.org/10.1016/j.arth.2012.08.008

    Article  PubMed  Google Scholar 

  8. Jiang C, Liu Z, Wang Y, Bian Y, Feng B, Weng X (2016) posterior cruciate ligament retention versus posterior stabilization for total knee arthroplasty: a meta-analysis. PLoS ONE 11(1):e0147865. https://doi.org/10.1371/journal.pone.0147865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Longo UG, Ciuffreda M, Mannering N, D’Andrea V, Locher J, Salvatore G, Denaro V (2018) Outcomes of posterior-stabilized compared with cruciate-retaining total knee arthroplasty. J Knee Surg 31(4):321–340. https://doi.org/10.1055/s-0037-1603902

    Article  PubMed  Google Scholar 

  10. Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, Nelissen RG (2013) Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev 10:CD004803. https://doi.org/10.1002/14651858.cd004803.pub3

    Article  Google Scholar 

  11. Luo SX, Zhao JM, Su W, Li XF, Dong GF (2012) Posterior cruciate substituting versus posterior cruciate retaining total knee arthroplasty prostheses: a meta-analysis. Knee 19(4):246–252. https://doi.org/10.1016/j.knee.2011.12.005

    Article  PubMed  Google Scholar 

  12. Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The cochrane collaboration. Available from: http://handbook.cochrane.org/. Accessed Aug 2018

  13. Howick JCI, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, Moschetti I, Phillips B, Thornton H, Goddard O, Hodgkinson M (2011) The 2011 Oxford levels of evidence 2. Oxford Centre for Evidence-Based Medicine. Available from: https://www.cebm.net/index.aspx?o=5653. Accessed Aug 2018

  14. Giesinger JM, Hamilton DF, Jost B, Behrend H, Giesinger K (2015) WOMAC, EQ-5D and knee society score thresholds for treatment success after total knee arthroplasty. J Arthroplasty 30(12):2154–2158. https://doi.org/10.1016/j.arth.2015.06.012

    Article  PubMed  Google Scholar 

  15. Noble PC, Scuderi GR, Brekke AC, Sikorskii A, Benjamin JB, Lonner JH, Chadha P, Daylamani DA, Scott WN, Bourne RB (2012) Development of a new knee society scoring system. Clin Orthop Relat Res 470(1):20–32. https://doi.org/10.1007/s11999-011-2152-z

    Article  Google Scholar 

  16. Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN (2012) The new knee society knee scoring system. Clin Orthop Relat Res 470(1):3–19. https://doi.org/10.1007/s11999-011-2135-0

    Article  PubMed  Google Scholar 

  17. Sancheti KH, Sancheti PK, Shyam AK, Joshi R, Patil K, Jain A (2013) Factors affecting range of motion in total knee arthroplasty using high flexion prosthesis: a prospective study. Indian J Orthop 47(1):50–56. https://doi.org/10.4103/0019-5413.106901

    Article  PubMed  PubMed Central  Google Scholar 

  18. Migliorini F, Biagini M, Rath B, Meisen N, Tingart M, Eschweiler J (2018) Total hip arthroplasty: minimally invasive surgery or not meta-analysis of clinical trials. Int Orthop. https://doi.org/10.1007/s00264-018-4124-3

    Article  PubMed  Google Scholar 

  19. Lombardi AV, Fada RA, Hartman JF, Capps SG, Kefauver CA et al (2001) An algorithm for the posterior cruciate ligament in total knee arthroplasty. Clin Orthop Relat Res 392:75–87

    Article  Google Scholar 

  20. Zhang K, Mihalko WM (2012) Posterior cruciate mechanoreceptors in osteoarthritic and cruciate-retaining TKA retrievals: a pilot study. Clin Orthop Relat Res 470(7):1855–1859. https://doi.org/10.1007/s11999-011-2120-7

    Article  PubMed  Google Scholar 

  21. Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg 80(9):1365–1378

    Article  CAS  Google Scholar 

  22. Rajgopal A, Vasdev N, Pathak A, Gautam D, Vasdev A (2014) Histological changes and neural elements in the posterior cruciate ligament in osteoarthritic knees. J Orthop Surg (Hong Kong) 22(2):142–145. https://doi.org/10.1177/230949901402200204

    Article  CAS  Google Scholar 

  23. Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y (2015) Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty 30(5):864–869. https://doi.org/10.1016/j.arth.2014.12.027

    Article  PubMed  Google Scholar 

  24. Hazaki S, Yokoyama Y, Inoue H (2001) A radiographic analysis of anterior-posterior translation in total knee arthroplasty. J Orthop Sci 6(5):390–396

    Article  CAS  Google Scholar 

  25. Kim JH (2013) Effect of posterior femoral condylar offset and posterior tibial slope on maximal flexion angle of the knee in posterior cruciate ligament sacrificing total knee arthroplasty. Knee Surg Relat Res 25(2):54–59. https://doi.org/10.5792/ksrr.2013.25.2.54

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aglietti P, Baldini A, Buzzi R, Lup D, De Luca L (2005) Comparison of mobile-bearing and fixed-bearing total knee arthroplasty: a prospective randomized study. J Arthroplasty 20(2):145–153

    Article  Google Scholar 

  27. Arabori M, Matsui N, Kuroda R, Mizuno K, Doita M, Kurosaka M, Yoshiya S (2008) Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci 13(1):46–50. https://doi.org/10.1007/s00776-007-1191-5

    Article  PubMed  Google Scholar 

  28. Baier C, Springorum HR, Gotz J, Schaumburger J, Luring C, Grifka J, Beckmann J (2013) Comparing navigation-based in vivo knee kinematics pre- and postoperatively between a cruciate-retaining and a cruciate-substituting implant. Int Orthop 37(3):407–414. https://doi.org/10.1007/s00264-013-1798-4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beaupre LA, Sharifi B, Johnston DWC (2017) A randomized clinical trial comparing posterior cruciate-stabilizing vs posterior cruciate-retaining prostheses in primary total knee arthroplasty: 10-year follow-up. J Arthroplasty 32(3):818–823. https://doi.org/10.1016/j.arth.2016.08.030

    Article  PubMed  Google Scholar 

  30. Cankaya D, Ozkurt B, Aydin C, Tabak AY (2014) No difference in blood loss between posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-stabilized total knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 22(8):1865–1869. https://doi.org/10.1007/s00167-013-2818-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carvalho LH Jr, Temponi EF, Soares LF, Goncalves MJ (2014) Relationship between range of motion and femoral rollback in total knee arthroplasty. Acta Orthop Traumatol Turc 48(1):1–5. https://doi.org/10.3944/AOTT.2014.2965

    Article  PubMed  Google Scholar 

  32. Catani F, Leardini A, Ensini A et al (2004) The stability of the cemented tibial component of total knee arthroplasty: posterior cruciateretaining versus posterior-stabilized design. J Arthroplasty 19(06):775–782

    Article  Google Scholar 

  33. Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M (2008) In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty 23(07):1057–1067

    Article  Google Scholar 

  34. Chaudhary R, Beaupre LA, Johnston DW (2008) Knee range of motion during the first 2 years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses. A randomized clinical trial. J Bone Joint Surg Am 90(12):2579–2586. https://doi.org/10.2106/jbjs.g.00995

    Article  CAS  PubMed  Google Scholar 

  35. Cho KY, Kim KI, Song SJ, Bae DK (2016) Does cruciate-retaining total knee arthroplasty show better quadriceps recovery than posterior-stabilized total knee arthroplasty? Objective measurement with a dynamometer in 102 knees. Clin Orthop Surg 8(4):379–385. https://doi.org/10.4055/cios.2016.8.4.379

    Article  PubMed  PubMed Central  Google Scholar 

  36. Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D (2001) Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res 392:208–212

    Article  Google Scholar 

  37. Delport HP (2013) The advantage of a total knee arthroplasty with rotating platform is only theoretical: prospective analysis of 1152 arthroplasties. Open Orthop J 7:635–640. https://doi.org/10.2174/1874325001307010635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fantozzi S, Catani F, Ensini A, Leardini A, Giannini S (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24(12):2222–2229

    Article  Google Scholar 

  39. Harato K, Bourne RB, Victor J, Snyder M, Hart J, Ries MD (2008) Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial. Knee 15(3):217–221. https://doi.org/10.1016/j.knee.2007.12.007

    Article  PubMed  Google Scholar 

  40. Kim YH, Kim JS, Yoon SH (2008) A recession of posterior cruciate ligament in posterior cruciate-retaining total knee arthrosplasty. J Arthroplasty 23(7):999–1004. https://doi.org/10.1016/j.arth.2007.09.010

    Article  PubMed  Google Scholar 

  41. Kim YH, Choi Y, Kwon OR, Kim JS (2009) Functional outcome and range of motion of high-flexion posterior cruciate-retaining and highflexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 91(04):753–760

    Article  Google Scholar 

  42. Kolisek FR, McGrath MS, Marker DR, Jessup N, Seyler TM, Mont MA, Lowry Barnes C (2009) Posterior-stabilized versus posterior cruciate ligament-retaining total knee arthroplasty. Iowa Orthop J 29:23–27

    PubMed  PubMed Central  Google Scholar 

  43. Liu HGZ, Zhang ZX (2015) Comparison of outcomes after bilateral simultaneous total knee arthroplasty using posterior-substituting versus cruciate-retaining prostheses. Saudi Med J 36(02):190–195

    Article  Google Scholar 

  44. Lützner JFF, Lützner C, Dexel J, Kirschner S (2015) Similar stability and range of motion between cruciate-retaining and cruciate-substituting ultracongruent insert total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(06):1638–1643

    Article  Google Scholar 

  45. Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplasty 19(3):349–353

    Article  Google Scholar 

  46. MatsumotoT M, Kubo S, Matsushita T, Kurosaka M, Kuroda R (2012) Intraoperative soft tissue balance reflects minimum 5-year midterm outcomes in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Arthroplasty 27(09):1723–1730

    Article  Google Scholar 

  47. Misra ANHM, Fiddian NJ, Newton G (2003) The role of the posterior cruciate ligament in total knee replacement. J Bone Joint Surg Br 85(03):389–392

    Article  CAS  Google Scholar 

  48. Roh YW, Jang J, Choi WC, Lee JK, Chun SH, Lee S, Seong SC, Lee MC (2013) Preservation of the posterior cruciate ligament is not helpful in highly conforming mobile-bearing total knee arthroplasty: a randomized controlled study. Knee Surg Sports Traumatol Arthrosc 21(12):2850–2859. https://doi.org/10.1007/s00167-012-2265-2

    Article  PubMed  Google Scholar 

  49. Sando T, McCalden RW, Bourne RB, MacDonald SJ, Somerville LE (2015) Ten-year results comparing posterior cruciate-retaining versus posterior cruciate-substituting total knee arthroplasty. J Arthroplasty 30(02):210–215

    Article  Google Scholar 

  50. Seon JK, Park JK, Shin YJ, Seo HY, Lee KB, Song EK (2011) Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs substituting designs. Knee Surg Sports Traumatol Arthrosc 19(12):2016–2022

    Article  Google Scholar 

  51. Snider MG, Macdonald SJ (2009) The influence of the posterior cruciate ligament and component design on joint line position after primary total knee arthroplasty. J Arthroplasty 24(07):1093–1098

    Article  Google Scholar 

  52. Straw R, Kulkarni S, Attfield S, Wilton TJ (2003) Posterior cruciate ligament at total knee replacement. Essential, beneficial or a hindrance? J Bone Joint Surg Br 85(5):671–674

    Article  CAS  Google Scholar 

  53. Tanzer M, Smith K, Burnett S (2002) Posterior-stabilized versus cruciateretaining total knee arthroplasty: balancing the gap. J Arthroplasty 17(07):813–819

    Article  Google Scholar 

  54. Thomsen MG, Husted H, Otte KS, Holm G, Troelsen A (2013) Do patients care about higher flexion in total knee arthroplasty? A randomized, controlled, double-blinded trial. BMC Musculoskelet Disord 14(01):127

    Article  Google Scholar 

  55. Tsuneizumi Y, Suzuki M, Miyagi J et al (2008) Evaluation of joint laxity against distal traction force upon flexion in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Orthop Sci 13(06):504–509

    Article  Google Scholar 

  56. van de Groes S, van der Ven P, Kremers-van de Hei K, Koeter S, Verdonschot N (2015) Flexion and anterior knee pain after high flexion posterior stabilized or cruciate retaining knee replacement. Acta Orthop Belg 81(4):730–737

    PubMed  Google Scholar 

  57. van den Boom LG, Halbertsma JP, van Raaij JJ, Brouwer RW, Bulstra SK, van den Akker-Scheek I (2014) No difference in gait between posterior cruciate retention and the posterior stabilized design after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3135–3141

    Article  Google Scholar 

  58. Vermesan D, Trocan I, Prejbeanu R, Poenaru DV, Haragus H, Gratian D, Marrelli M, Inchingolo F, Caprio M, Cagiano R, Tatullo M (2015) Reduced operating time but not blood loss with cruciate retaining total knee arthroplasty. J Clin Med Res 7(3):171–175. https://doi.org/10.14740/jocmr2048w

    Article  PubMed  Google Scholar 

  59. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87(5):646–655. https://doi.org/10.1302/0301-620X.87B5.15602

    Article  CAS  PubMed  Google Scholar 

  60. Wang CJ, Wang JW, Chen HS (2004) Comparing cruciate-retaining total knee arthroplasty and cruciate-substituting total knee arthroplasty: a prospective clinical study. Chang Gung Med J 27(08):578–585

    PubMed  Google Scholar 

  61. Yagishita K, Muneta T, Ju YJ, Morito T, Yamazaki J, Sekiya I (2012) High-flex posterior cruciate-retaining vs posterior cruciate-substituting designs in simultaneous bilateral total knee arthroplasty: a prospective, randomized study. J Arthroplasty 27(03):368–374

    Article  Google Scholar 

  62. Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20(6):777–783. https://doi.org/10.1016/j.arth.2004.11.01

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Migliorini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorini, F., Eschweiler, J., Tingart, M. et al. Posterior-stabilized versus cruciate-retained implants for total knee arthroplasty: a meta-analysis of clinical trials. Eur J Orthop Surg Traumatol 29, 937–946 (2019). https://doi.org/10.1007/s00590-019-02370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-019-02370-1

Keywords

Navigation