Posterior-stabilized versus cruciate-retained implants for total knee arthroplasty: a meta-analysis of clinical trials

  • Filippo MiglioriniEmail author
  • Jörg Eschweiler
  • Markus Tingart
  • Björn Rath
Up-to date Review and Case Report • KNEE - ARTHROPLASTY



A meta-analysis comparing the outcomes of patients undergoing cruciate retaining (CR) versus posterior stabilized (PS) in primary total knee arthroplasty was performed. The outcomes of interest were the Knee Society Rating System, clinical (KSCS) and functional (KSFS) subscales, joint range of motion (ROM), surgical duration and further complications (anterior knee pain, instability and revision rate).

Materials and methods

The search was conducted in July 2018, accessing the following databases: Cochrane Systematic Reviews, Scopus, PubMed, EMBASE, CINAHL, AMED and Google Scholar. We included only clinical trials level of evidence I and II. During the statistical analysis, we excluded all the studies that affect negatively the I2 test, in order to achieve more reliable results. For the methodological quality assessment we referred to the PEDro score. The risk of publication’s bias was evaluated by the funnel plots across all the comparisons.


The PEDro score reported a good methodological quality assessment. The funnel plot detected a very low risk of publication’s bias. We included in this study 36 articles, counting a total of 4052 patients and 4884 procedures. The mean follow-up term for both groups was 3.39 years. The ROM resulted in an overall estimate effect of 2.18° in favor of the PS group. The overall WOMAC showed a result in favor of the PS group. The overall estimate effect of the KSCS was 0.02% higher in the CR group. The KSFS showed an overall estimate effect of 2.09% in favor of the PS group. Concerning the surgical duration, the estimate effect resulted in 6.87 min shorter in the CR group. No differences were reported across the two groups regarding anterior knee pain, knee joint instability or revision rate.


Both the prosthetic implants provided to be a safety and feasible solution to treat end-stage knee joint degeneration. The PS implants reported improvements in the knee range of motion and a prolongation of the surgical time. No clinically relevant dissimilarities concerning the analyzed scores were evidenced. No statistically significant relevant differences in complications were detected.


Total knee arthroplasty Posterior stabilized Cruciate retain Posterior cruciate ligament 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.


  1. 1.
    Anderson JG, Wixson RL, Tsai D, Stulberg SD, Chang RW (1996) Functional outcome and patient satisfaction in total knee patients over the age of 75. J Arthroplasty 11(7):831–840Google Scholar
  2. 2.
    Jenkins PJ, Clement ND, Hamilton DF et al (2013) Predicting the cost-effectiveness of total hip and knee replacement: a health economic analysis. Bone Joint J 95B:115–121Google Scholar
  3. 3.
    Bedair H, Cha TD, Hansen VJ (2014) Economic benefit to society at large of total knee arthroplasty in younger patients: a Markov analysis. J Bone Joint Surg Am 96(2):119–126. Google Scholar
  4. 4.
    Abdel MP, Morrey ME, Jensen MR, Morrey BF (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am 93(22):2072–2078. Google Scholar
  5. 5.
    Sachinis NP (2013) Posterior cruciate ligament retaining versus posterior cruciate ligament substituting knee arthroplasties: a four-decades-old debate. Hard Tissue 2(3):28Google Scholar
  6. 6.
    Jain S, Pathak AC, Kanniyan K, Kulkarni S, Tawar S, Mane P (2013) High-flexion posterior-stabilized total knee prosthesis: Is it worth the hype? Knee Surg Relat Res 25(3):100–105. Google Scholar
  7. 7.
    Bercik MJ, Joshi A, Parvizi J (2013) Posterior cruciate-retaining versus posterior-stabilized total knee arthroplasty: a meta-analysis. J Arthroplasty 28(3):439–444. Google Scholar
  8. 8.
    Jiang C, Liu Z, Wang Y, Bian Y, Feng B, Weng X (2016) posterior cruciate ligament retention versus posterior stabilization for total knee arthroplasty: a meta-analysis. PLoS ONE 11(1):e0147865. Google Scholar
  9. 9.
    Longo UG, Ciuffreda M, Mannering N, D’Andrea V, Locher J, Salvatore G, Denaro V (2018) Outcomes of posterior-stabilized compared with cruciate-retaining total knee arthroplasty. J Knee Surg 31(4):321–340. Google Scholar
  10. 10.
    Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, Nelissen RG (2013) Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev 10:CD004803. Google Scholar
  11. 11.
    Luo SX, Zhao JM, Su W, Li XF, Dong GF (2012) Posterior cruciate substituting versus posterior cruciate retaining total knee arthroplasty prostheses: a meta-analysis. Knee 19(4):246–252. Google Scholar
  12. 12.
    Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The cochrane collaboration. Available from: Accessed Aug 2018
  13. 13.
    Howick JCI, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, Moschetti I, Phillips B, Thornton H, Goddard O, Hodgkinson M (2011) The 2011 Oxford levels of evidence 2. Oxford Centre for Evidence-Based Medicine. Available from: Accessed Aug 2018
  14. 14.
    Giesinger JM, Hamilton DF, Jost B, Behrend H, Giesinger K (2015) WOMAC, EQ-5D and knee society score thresholds for treatment success after total knee arthroplasty. J Arthroplasty 30(12):2154–2158. Google Scholar
  15. 15.
    Noble PC, Scuderi GR, Brekke AC, Sikorskii A, Benjamin JB, Lonner JH, Chadha P, Daylamani DA, Scott WN, Bourne RB (2012) Development of a new knee society scoring system. Clin Orthop Relat Res 470(1):20–32. Google Scholar
  16. 16.
    Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN (2012) The new knee society knee scoring system. Clin Orthop Relat Res 470(1):3–19. Google Scholar
  17. 17.
    Sancheti KH, Sancheti PK, Shyam AK, Joshi R, Patil K, Jain A (2013) Factors affecting range of motion in total knee arthroplasty using high flexion prosthesis: a prospective study. Indian J Orthop 47(1):50–56. Google Scholar
  18. 18.
    Migliorini F, Biagini M, Rath B, Meisen N, Tingart M, Eschweiler J (2018) Total hip arthroplasty: minimally invasive surgery or not meta-analysis of clinical trials. Int Orthop. Google Scholar
  19. 19.
    Lombardi AV, Fada RA, Hartman JF, Capps SG, Kefauver CA et al (2001) An algorithm for the posterior cruciate ligament in total knee arthroplasty. Clin Orthop Relat Res 392:75–87Google Scholar
  20. 20.
    Zhang K, Mihalko WM (2012) Posterior cruciate mechanoreceptors in osteoarthritic and cruciate-retaining TKA retrievals: a pilot study. Clin Orthop Relat Res 470(7):1855–1859. Google Scholar
  21. 21.
    Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. J Bone Joint Surg 80(9):1365–1378Google Scholar
  22. 22.
    Rajgopal A, Vasdev N, Pathak A, Gautam D, Vasdev A (2014) Histological changes and neural elements in the posterior cruciate ligament in osteoarthritic knees. J Orthop Surg (Hong Kong) 22(2):142–145. Google Scholar
  23. 23.
    Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y (2015) Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty 30(5):864–869. Google Scholar
  24. 24.
    Hazaki S, Yokoyama Y, Inoue H (2001) A radiographic analysis of anterior-posterior translation in total knee arthroplasty. J Orthop Sci 6(5):390–396Google Scholar
  25. 25.
    Kim JH (2013) Effect of posterior femoral condylar offset and posterior tibial slope on maximal flexion angle of the knee in posterior cruciate ligament sacrificing total knee arthroplasty. Knee Surg Relat Res 25(2):54–59. Google Scholar
  26. 26.
    Aglietti P, Baldini A, Buzzi R, Lup D, De Luca L (2005) Comparison of mobile-bearing and fixed-bearing total knee arthroplasty: a prospective randomized study. J Arthroplasty 20(2):145–153Google Scholar
  27. 27.
    Arabori M, Matsui N, Kuroda R, Mizuno K, Doita M, Kurosaka M, Yoshiya S (2008) Posterior condylar offset and flexion in posterior cruciate-retaining and posterior stabilized TKA. J Orthop Sci 13(1):46–50. Google Scholar
  28. 28.
    Baier C, Springorum HR, Gotz J, Schaumburger J, Luring C, Grifka J, Beckmann J (2013) Comparing navigation-based in vivo knee kinematics pre- and postoperatively between a cruciate-retaining and a cruciate-substituting implant. Int Orthop 37(3):407–414. Google Scholar
  29. 29.
    Beaupre LA, Sharifi B, Johnston DWC (2017) A randomized clinical trial comparing posterior cruciate-stabilizing vs posterior cruciate-retaining prostheses in primary total knee arthroplasty: 10-year follow-up. J Arthroplasty 32(3):818–823. Google Scholar
  30. 30.
    Cankaya D, Ozkurt B, Aydin C, Tabak AY (2014) No difference in blood loss between posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-stabilized total knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 22(8):1865–1869. Google Scholar
  31. 31.
    Carvalho LH Jr, Temponi EF, Soares LF, Goncalves MJ (2014) Relationship between range of motion and femoral rollback in total knee arthroplasty. Acta Orthop Traumatol Turc 48(1):1–5. Google Scholar
  32. 32.
    Catani F, Leardini A, Ensini A et al (2004) The stability of the cemented tibial component of total knee arthroplasty: posterior cruciateretaining versus posterior-stabilized design. J Arthroplasty 19(06):775–782Google Scholar
  33. 33.
    Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M (2008) In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J Arthroplasty 23(07):1057–1067Google Scholar
  34. 34.
    Chaudhary R, Beaupre LA, Johnston DW (2008) Knee range of motion during the first 2 years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses. A randomized clinical trial. J Bone Joint Surg Am 90(12):2579–2586. Google Scholar
  35. 35.
    Cho KY, Kim KI, Song SJ, Bae DK (2016) Does cruciate-retaining total knee arthroplasty show better quadriceps recovery than posterior-stabilized total knee arthroplasty? Objective measurement with a dynamometer in 102 knees. Clin Orthop Surg 8(4):379–385. Google Scholar
  36. 36.
    Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D (2001) Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res 392:208–212Google Scholar
  37. 37.
    Delport HP (2013) The advantage of a total knee arthroplasty with rotating platform is only theoretical: prospective analysis of 1152 arthroplasties. Open Orthop J 7:635–640. Google Scholar
  38. 38.
    Fantozzi S, Catani F, Ensini A, Leardini A, Giannini S (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24(12):2222–2229Google Scholar
  39. 39.
    Harato K, Bourne RB, Victor J, Snyder M, Hart J, Ries MD (2008) Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial. Knee 15(3):217–221. Google Scholar
  40. 40.
    Kim YH, Kim JS, Yoon SH (2008) A recession of posterior cruciate ligament in posterior cruciate-retaining total knee arthrosplasty. J Arthroplasty 23(7):999–1004. Google Scholar
  41. 41.
    Kim YH, Choi Y, Kwon OR, Kim JS (2009) Functional outcome and range of motion of high-flexion posterior cruciate-retaining and highflexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 91(04):753–760Google Scholar
  42. 42.
    Kolisek FR, McGrath MS, Marker DR, Jessup N, Seyler TM, Mont MA, Lowry Barnes C (2009) Posterior-stabilized versus posterior cruciate ligament-retaining total knee arthroplasty. Iowa Orthop J 29:23–27Google Scholar
  43. 43.
    Liu HGZ, Zhang ZX (2015) Comparison of outcomes after bilateral simultaneous total knee arthroplasty using posterior-substituting versus cruciate-retaining prostheses. Saudi Med J 36(02):190–195Google Scholar
  44. 44.
    Lützner JFF, Lützner C, Dexel J, Kirschner S (2015) Similar stability and range of motion between cruciate-retaining and cruciate-substituting ultracongruent insert total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23(06):1638–1643Google Scholar
  45. 45.
    Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplasty 19(3):349–353Google Scholar
  46. 46.
    MatsumotoT M, Kubo S, Matsushita T, Kurosaka M, Kuroda R (2012) Intraoperative soft tissue balance reflects minimum 5-year midterm outcomes in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Arthroplasty 27(09):1723–1730Google Scholar
  47. 47.
    Misra ANHM, Fiddian NJ, Newton G (2003) The role of the posterior cruciate ligament in total knee replacement. J Bone Joint Surg Br 85(03):389–392Google Scholar
  48. 48.
    Roh YW, Jang J, Choi WC, Lee JK, Chun SH, Lee S, Seong SC, Lee MC (2013) Preservation of the posterior cruciate ligament is not helpful in highly conforming mobile-bearing total knee arthroplasty: a randomized controlled study. Knee Surg Sports Traumatol Arthrosc 21(12):2850–2859. Google Scholar
  49. 49.
    Sando T, McCalden RW, Bourne RB, MacDonald SJ, Somerville LE (2015) Ten-year results comparing posterior cruciate-retaining versus posterior cruciate-substituting total knee arthroplasty. J Arthroplasty 30(02):210–215Google Scholar
  50. 50.
    Seon JK, Park JK, Shin YJ, Seo HY, Lee KB, Song EK (2011) Comparisons of kinematics and range of motion in high-flexion total knee arthroplasty: cruciate retaining vs substituting designs. Knee Surg Sports Traumatol Arthrosc 19(12):2016–2022Google Scholar
  51. 51.
    Snider MG, Macdonald SJ (2009) The influence of the posterior cruciate ligament and component design on joint line position after primary total knee arthroplasty. J Arthroplasty 24(07):1093–1098Google Scholar
  52. 52.
    Straw R, Kulkarni S, Attfield S, Wilton TJ (2003) Posterior cruciate ligament at total knee replacement. Essential, beneficial or a hindrance? J Bone Joint Surg Br 85(5):671–674Google Scholar
  53. 53.
    Tanzer M, Smith K, Burnett S (2002) Posterior-stabilized versus cruciateretaining total knee arthroplasty: balancing the gap. J Arthroplasty 17(07):813–819Google Scholar
  54. 54.
    Thomsen MG, Husted H, Otte KS, Holm G, Troelsen A (2013) Do patients care about higher flexion in total knee arthroplasty? A randomized, controlled, double-blinded trial. BMC Musculoskelet Disord 14(01):127Google Scholar
  55. 55.
    Tsuneizumi Y, Suzuki M, Miyagi J et al (2008) Evaluation of joint laxity against distal traction force upon flexion in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Orthop Sci 13(06):504–509Google Scholar
  56. 56.
    van de Groes S, van der Ven P, Kremers-van de Hei K, Koeter S, Verdonschot N (2015) Flexion and anterior knee pain after high flexion posterior stabilized or cruciate retaining knee replacement. Acta Orthop Belg 81(4):730–737Google Scholar
  57. 57.
    van den Boom LG, Halbertsma JP, van Raaij JJ, Brouwer RW, Bulstra SK, van den Akker-Scheek I (2014) No difference in gait between posterior cruciate retention and the posterior stabilized design after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3135–3141Google Scholar
  58. 58.
    Vermesan D, Trocan I, Prejbeanu R, Poenaru DV, Haragus H, Gratian D, Marrelli M, Inchingolo F, Caprio M, Cagiano R, Tatullo M (2015) Reduced operating time but not blood loss with cruciate retaining total knee arthroplasty. J Clin Med Res 7(3):171–175. Google Scholar
  59. 59.
    Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87(5):646–655. Google Scholar
  60. 60.
    Wang CJ, Wang JW, Chen HS (2004) Comparing cruciate-retaining total knee arthroplasty and cruciate-substituting total knee arthroplasty: a prospective clinical study. Chang Gung Med J 27(08):578–585Google Scholar
  61. 61.
    Yagishita K, Muneta T, Ju YJ, Morito T, Yamazaki J, Sekiya I (2012) High-flex posterior cruciate-retaining vs posterior cruciate-substituting designs in simultaneous bilateral total knee arthroplasty: a prospective, randomized study. J Arthroplasty 27(03):368–374Google Scholar
  62. 62.
    Yoshiya S, Matsui N, Komistek RD, Dennis DA, Mahfouz M, Kurosaka M (2005) In vivo kinematic comparison of posterior cruciate-retaining and posterior stabilized total knee arthroplasties under passive and weight-bearing conditions. J Arthroplasty 20(6):777–783. Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OrthopaedicsRWTH Aachen University ClinicAachenGermany

Personalised recommendations