Minimally invasive opening wedge tibia outpatient osteotomy, using screw-to-plate locking technique and a calcium phosphate cement

  • Claude SchwartzEmail author
Expert's Opinion • KNEE - BIOMATERIALS


Medial knee osteoarthritis on angular varus deformity of a lower limb is very common. Open-wedge high tibial osteotomy is a treatment of choice if cartilage is not excessively worn (Allback 1 or 2). The technique based on a plate fixation and the bone defect filled with calcium phosphate cement is thoroughly described. Data at 1, 3, 6 months and 1 year of a 19 cases continuous and prospective series are collected and analysed. Mean age at the time of operation was 55 years. The average preoperative varus deformity was 5° and corrected to an average postoperative valgus of 4° (range 3°–6°). Each control includes the collection of eventual complications, the measurement of health status (quality of life and functional scores) and antero-posterior and lateral X-rays. All osteotomies were considered healed at 6 weeks without any correction loss except one, probably result of a technical error. There was no difference in clinical and functional results between the group and the literature, but the final result occurred earlier in the treatment when the bone defect was filled with either calcium phosphate cement. Faster recovery involved no specific complication and enabled outpatient treatment in a majority of patients.


Knee Osteoarthrosis Osteotomy Calcium phosphates Bone cement 


Compliance with ethical standards

Conflict of interest

The author has a contract as medical advisor to Graftys SA, 13 854 Aix en Provence.


  1. 1.
    Hernigou P, Medevielle D, Debeyre J, Goutallier D (1987) Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Joint Surg Am 69(3):332–354CrossRefPubMedGoogle Scholar
  2. 2.
    Wright JM, Crockett HC, Slawski DP, Madsen MW, Windsor RE (2005) High tibial osteotomy. J Am Acad Orthop Surg 13(4):279–289CrossRefPubMedGoogle Scholar
  3. 3.
    Flecher X, Parratte S, Aubaniac JM, Argenson JN (2006) A 12–28-years followup study of closing wedge high tibial osteotomy. Clin Orthop Relat Res 452:91–96CrossRefPubMedGoogle Scholar
  4. 4.
    Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H (2008) The long-term outcome of high tibial osteotomy—a ten- to 20-year follow-up. J Bone Joint Surg 90B(5):592–596CrossRefGoogle Scholar
  5. 5.
    Spahn G, Klinger HM, Harth p et al (2012) Cartilage regeneration after high tibial osteotomy. Results of an arthroscopic study. Z Orthop Unf 150(3):272–279CrossRefGoogle Scholar
  6. 6.
    Jung WH, Takeuchi R, Chun CW et al (2014) Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 30(1):72–79CrossRefPubMedGoogle Scholar
  7. 7.
    Giuseffi SA, Replogle WH, Shelton WR (2015) Opening-wedge high tibial osteotomy: review of 100 consecutive cases. Arthroscopy 31(11):2128–2137CrossRefPubMedGoogle Scholar
  8. 8.
    Ahlbäck S (1968) Osteoarthrosis of the knee: a radiographic investigation. Acta Radiol Stockh Suppl 277:7–72Google Scholar
  9. 9.
    Odenbring S, Berggren AM, Peil L (1993) Roentgenographic assessment of the hip–knee–ankle axis in medial gonarthrosis. A study of reproducibility. Clin Orthop Relat Res 289:195–196Google Scholar
  10. 10.
    Dugdale TW, Noyes FR, Styer D (1992) Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res 274:248–264Google Scholar
  11. 11.
    Bajammal SS et al (2008) The use of calcium phosphate bone cement in fracture treatment. A meta-analysis of randomized trials. J Bone Joint Surg Am 90(6):1186–1196CrossRefPubMedGoogle Scholar
  12. 12.
    Goff T, Kanakaris NK, Giannoudis PV (2013) Use of bone graft substitutes in the management of tibial plateau fractures. Injury 44(Suppl 1):S86–S94CrossRefPubMedGoogle Scholar
  13. 13.
    Johal HS, Buckley RE, Le IL, Leighton RK (2009) A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (alpha-BSM) in treatment of displaced intra-articular calcaneal fractures. J Trauma 67(4):875–882CrossRefPubMedGoogle Scholar
  14. 14.
    Thawrani D, Thai CC, Welch RD, Copley L, Johnston CE (2009) Successful treatment of unicameral bone cyst by single percutaneous injection of alpha-BSM. J Pediatr Orthop 29(5):511–517CrossRefPubMedGoogle Scholar
  15. 15.
    Mattsson P, Larsson S (2006) Calcium phosphate cement for augmentation did not improve results after internal fixation of displaced femoral neck fractures: a randomized study of 118 patients. Acta Orthop 77:251–256CrossRefPubMedGoogle Scholar
  16. 16.
    Johal HS, Buckley RE, Le IL, Leighton RK (2009) A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (alpha-BSM) in treatment of displaced intra-articular calcaneal fractures. J Trauma 67:875–882CrossRefPubMedGoogle Scholar
  17. 17.
    Lobenhoffer P, Gerich T, Witte F, Tscherne H (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty month mean follow-up. J Orthop Trauma 16(3):143–149CrossRefPubMedGoogle Scholar
  18. 18.
    Horstmann WG, Verheyen CC, Leemans R (2003) An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury 34(2):141–144CrossRefPubMedGoogle Scholar
  19. 19.
    Keating JF, Hajducka CL, Harper J (2003) Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. A pilot study. J Bone Joint Surg Br 85(1):68–73CrossRefPubMedGoogle Scholar
  20. 20.
    Elsner A, Jubel A, Prokop A, Koebke J, Rehm KE, Andermahr J (2005) Augmentation of intraarticular calcaneal fractures with injectable calcium phosphate cement: densitometry, histology, and functional outcome of 18 patients. J Foot Ankle Surg 44(5):390–395CrossRefPubMedGoogle Scholar
  21. 21.
    Bloemers FW, Stahl JP, Sarkar MR, Linhart W, Rueckert U, Burhart U, Wippermann BW (2004) Bone substitution and augmentation in trauma surgery with a resorbable calcium phosphate bone cement. Eur J Trauma 30:17–22CrossRefGoogle Scholar
  22. 22.
    Frayssinet P, Schwartz C (1998) Histological study of calcium phosphate ceramics implanted in human long bones. In: Legros RZ, Legros JP (eds) Bioceramics, vol 11. World Scientific Publishing Co Ltd, Singapore, pp 353–357Google Scholar
  23. 23.
    Frayssinet P, Schwartz C, Beya B et al (1999) Biology of the calcium phosphate integration in human long bones. Eur J Orthop Surg Traumatol 9:167–170CrossRefGoogle Scholar
  24. 24.
    Sarkar MR, Wachter N, Patka P, Kinzl L (2001) First histological observations on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone. J Biomed Mater Res 58(3):329–334CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinique des 3 frontièresSaint-LouisFrance

Personalised recommendations