Advertisement

Spinal motion preservation surgery: indications and applications

  • Ioannis D. Gelalis
  • Dimitrios V. PapadopoulosEmail author
  • Dionysios K. Giannoulis
  • Andreas G. Tsantes
  • Anastasios V. Korompilias
General Review • SPINE - MOTION

Abstract

Fusion is one of the most commonly performed spinal procedures, indicated for a wide range of spinal problems. Elimination of motion though results in accelerated degeneration of the adjacent level, known as adjacent level disease. Motion preservation surgical methods were developed in order to overcome this complication. These methods include total disc replacement, laminoplasty, interspinous implants and dynamic posterior stabilization systems. The initial enthusiasm about these methods was followed by certain concerns about their clinical usefulness and their results. The main indications for total disc replacement are degenerative disc disease, but the numerous contraindications for this method make it difficult to find the right candidate. Application of interspinous implants has shown good results in patients with spinal stenosis, but a more precise definition is needed regarding the severity of spinal stenosis up to which these implants can be used. Laminoplasty has several advantages and less complications compared to fusion and laminectomy in patients with cervical myelopathy/radiculopathy. Dynamic posterior stabilization could replace conventional fusion in certain cases, but also in this case the results are successful only in mild to moderate cases.

Keywords

Total disc replacement Laminoplasty Interspinous implants Dynamic posterior stabilization 

Notes

Compliance with ethical standards

Conflict of interest

Ioannis D. Gelalis, Dimitrios V. Papadopoulos, Dionysios K. Giannoulis, Andreas G. Tsantes, Anastasios V. Korompilias declare that they have no conflict of interest.

References

  1. 1.
    Zweig T, Aghayev E, Melloh M, Dietrich D, Röder C (2011) Influence of preoperative leg pain and radiculopathy on outcomes in mono-segmental lumbar total disc replacement: results from a nationwide registry. Eur Spine J 21(S6):729–736. doi: 10.1007/s00586-011-1863-x CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Buttner-Janz K, Guyer R, Ohnmeiss D (2014) Indications for lumbar total disc replacement: selecting the right patient with the right indication for the right total disc. IJSS 8:12. doi: 10.14444/1012 CrossRefGoogle Scholar
  3. 3.
    Meir A, Freeman B, Fraser R, Fowler S (2013) Ten-year survival and clinical outcome of the AcroFlex lumbar disc replacement for the treatment of symptomatic disc degeneration. Spine J 13(1):13–21. doi: 10.1016/j.spinee.2012.12.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Balsano M, Zachos A, Ruggiu A, Barca F, Tranquilli-Leali P, Doria C (2011) Nucleus disc arthroplasty with the NUBAC™ device: 2-year clinical experience. Eur Spine J 20(S1):36–40. doi: 10.1007/s00586-011-1752- CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Petilon J, Roth J, Hardenbrook M (2011) Results of lumbar total disc arthroplasty in military personnel. J Spinal Disord Tech 24(5):297–301. doi: 10.1097/bsd.0b013e3181fb3e2a CrossRefPubMedGoogle Scholar
  6. 6.
    Patel A, Brodke D, Pimenta L et al (2008) Revision strategies in lumbar total disc arthroplasty. Spine 33(11):1276–1283. doi: 10.1097/brs.0b013e3181714a1d CrossRefPubMedGoogle Scholar
  7. 7.
    Chin K (2007) Epidemiology of indications and contraindications to total disc replacement in an academic practice. Spine J 7(4):392–398. doi: 10.1016/j.spinee.2006.08.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Siepe C, Mayer H, Heinz-Leisenheimer M, Korge A (2007) Total lumbar disc replacement. Spine 32(7):782–790. doi: 10.1097/01.brs.0000259071.64027.04 CrossRefPubMedGoogle Scholar
  9. 9.
    David T (2007) Long-term results of one-level lumbar arthroplasty. Spine 32(6):661–666. doi: 10.1097/01.brs.0000257554.67505.45 CrossRefPubMedGoogle Scholar
  10. 10.
    Holt R, Majd M, Isaza J et al (2007) Complications of lumbar artificial disc replacement compared to fusion: results from the prospective, randomized, multicenter US Food and Drug Administration Investigational Device Exemption Study of the Charité artificial disc. SAS J 1(1):20–27. doi: 10.1016/s1935-9810(07)70043-9 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pimenta L, Díaz R, Guerrero L (2006) Charité lumbar artificial disc retrieval: use of a lateral minimally invasive technique. J Neurosurg 5(6):556–561. doi: 10.3171/spi.2006.5.6.556 Google Scholar
  12. 12.
    Regan J, McAfee P, Blumenthal S et al (2006) Evaluation of surgical volume and the early experience with lumbar total disc replacement as part of the investigational device exemption study of the Charite artificial disc. Spine 31(19):2270–2276. doi: 10.1097/01.brs.0000234726.55383.0c CrossRefPubMedGoogle Scholar
  13. 13.
    Siepe C, Mayer H, Wiechert K, Korge A (2006) Clinical results of total lumbar disc replacement with ProDisc II. Spine 31(17):1923–1932. doi: 10.1097/01.brs.0000228780.06569.e8 CrossRefPubMedGoogle Scholar
  14. 14.
    Diwan A, Kulkarni A (2005) Prosthetic Lumbar disc replacement for degenerative disc disease. Neurol India 53(4):499. doi: 10.4103/0028-3886.22620 CrossRefPubMedGoogle Scholar
  15. 15.
    Auerbach J, Jones K, Fras C, Balderston J, Rushton S, Chin K (2008) The prevalence of indications and contraindications to cervical total disc replacement. Spine J 8(5):711–716. doi: 10.1016/j.spinee.2007.06.018 CrossRefPubMedGoogle Scholar
  16. 16.
    Uschold T, Fusco D, Germain R, Tumialan L, Chang S (2011) Cervical and lumbar spinal arthroplasty: clinical review. AJNR 33(9):1631–1641. doi: 10.3174/ajnr.a2758 CrossRefPubMedGoogle Scholar
  17. 17.
    Sekhon L, Ball J (2005) Artificial cervical disc replacement: principles, types and techniques. Neurol India 53(4):445. doi: 10.4103/0028-3886.22611 CrossRefPubMedGoogle Scholar
  18. 18.
    Wenger M, Markwalder TM (2010) Bryan total disc arthroplasty: a replacement disc for cervical disc disease. Med Dev 3:11–24. doi: 10.2147/mder.s7605 Google Scholar
  19. 19.
    Pimenta L, McAfee P, Cappuccino A, Cunningham B, Diaz R, Coutinho E (2007) Superiority of multilevel cervical arthroplasty outcomes versus single-level outcomes. Spine 32(12):1337–1344. doi: 10.1097/brs.0b013e318059af12 CrossRefPubMedGoogle Scholar
  20. 20.
    Shin D, Yi S, Yoon D, Kim K, Shin H (2009) Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease. Spine 34(11):1153–1159. doi: 10.1097/brs.0b013e31819c9d39 CrossRefPubMedGoogle Scholar
  21. 21.
    Bertagnoli R, Duggal N, Pickett G et al (2005) Cervical total disc replacement, part two: clinical results. Orthop Clin North Am 36(3):355–362. doi: 10.1016/j.ocl.2005.02.009 CrossRefPubMedGoogle Scholar
  22. 22.
    Bono C, Kadaba M, Vaccaro A (2009) Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech 22(5):376–383. doi: 10.1097/bsd.0b013e31817c6489 CrossRefPubMedGoogle Scholar
  23. 23.
    Prud’homme M, Barrios C, Rouch P, Charles Y, Steib J, Skalli W (2015) Clinical outcomes and complications after pedicle-anchored dynamic or hybrid lumbar spine stabilization. J Spinal Disord Tech 28(8):E439–E448. doi: 10.1097/bsd.0000000000000092 CrossRefPubMedGoogle Scholar
  24. 24.
    Yu S, Yen C, Wu C, Kao F, Kao Y, Tu Y (2012) Radiographic and clinical results of posterior dynamic stabilization for the treatment of multisegment degenerative disc disease with a minimum follow-up of 3 years. Arch Orthop Trauma Surg 132(5):583–589. doi: 10.1007/s00402-012-1460-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Schwarzenbach O, Berlemann U, Stoll T, Dubois G (2005) Posterior dynamic stabilization systems: DYNESYS. Orthop Clin North Am 36(3):363–372. doi: 10.1016/j.ocl.2005.03.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Kurtz S, Lanman T, Higgs G et al (2013) Retrieval analysis of PEEK rods for posterior fusion and motion preservation. Eur Spine J 22(12):2752–2759. doi: 10.1007/s00586-013-2920-4 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lo T, Salerno S, Colohan A (2010) Interlaminar spacer: a review of its mechanism, application, and efficacy. World Neurosurg 74(6):617–626. doi: 10.1016/j.wneu.2010.05.038 CrossRefPubMedGoogle Scholar
  28. 28.
    Landi A (2014) Interspinous posterior devices: What is the real surgical indication? World J of Clin Cases 2(9):402. doi: 10.12998/wjcc.v2.i9.402 CrossRefGoogle Scholar
  29. 29.
    Fabrizi A, Maina R, Schiabello L (2011) Interspinous spacers in the treatment of degenerative lumbar spinal disease: our experience with DIAM and Aperius devices. Eur Spine J 20(S1):20–26. doi: 10.1007/s00586-011-1753-2 CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Selbeck M, Koy T, Röllinghoff M et al (2014) Indications and contraindications: interspinous process decompression devices in lumbar spine surgery. J Neurol Surg Part A Cent Eur Neurosurg 76(01):1–7. doi: 10.1055/s-0034-1382779 CrossRefGoogle Scholar
  31. 31.
    Bonaldi G, Brembilla C, Cianfoni A (2015) Minimally-invasive posterior lumbar stabilization for degenerative low back pain and sciatica. A review. Eur J Radiol 84(5):789–798. doi: 10.1016/j.ejrad.2014.04.012 CrossRefPubMedGoogle Scholar
  32. 32.
    Lee C, Hyun S, Kim K, Jahng T, Yoon S, Kim H (2013) The efficacy of lumbar hybrid stabilization using the DIAM™ to delay adjacent segment degeneration. Oper Neurosurg 73:224–231. doi: 10.1227/01.neu.0000430331.71257.61 CrossRefGoogle Scholar
  33. 33.
    Deyo R, Martin B, Ching A et al (2013) Interspinous spacers compared with decompression or fusion for lumbar stenosis. Spine 38(10):865–872. doi: 10.1097/brs.0b013e31828631b8 CrossRefPubMedGoogle Scholar
  34. 34.
    Maida G, Marcati E, Sarubbo S (2012) Heterotopic ossification in vertebral interlaminar/interspinous instrumentation: report of a case. Case Rep Surg. doi: 10.1155/2012/970642 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Borg A, Nurboja B, Timothy J, Choi D (2012) Interspinous distractor devices for the management of lumbar spinal stenosis: a miracle cure for a common problem? Br J Neurosurg 26(4):445–449. doi: 10.3109/02688697.2012.680630 CrossRefPubMedGoogle Scholar
  36. 36.
    Alfieri A, Gazzeri R, Prell J et al (2012) Role of lumbar interspinous distraction on the neural elements. Neurosurg Rev 35(4):477–484. doi: 10.1007/s10143-012-0394-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Postacchini R, Ferrari E, Cinotti G, Menchetti P, Postacchini F (2011) Aperius interspinous implant versus open surgical decompression in lumbar spinal stenosis. Spine J 11(10):933–939. doi: 10.1016/j.spinee.2011.08.419 CrossRefPubMedGoogle Scholar
  38. 38.
    Tamburrelli F, Proietti L, Logroscino C (2011) Critical analysis of lumbar interspinous devices failures: a retrospective study. Eur Spine J 20(S1):27–35. doi: 10.1007/s00586-011-1763-0 CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tuschel A, Chavanne A, Eder C, Meissl M, Becker P, Ogon M (2013) Implant survival analysis and failure modes of the X-stop interspinous distraction device. Spine 38(21):1826–1831. doi: 10.1097/brs.0b013e31820b86e1 CrossRefPubMedGoogle Scholar
  40. 40.
    Menchetti P, Postacchini F, Bini W, Canero G (2011) Percutaneous surgical treatment in lumbar spinal stenosis with Aperius-PercLID: indications, surgical technique and results. Acta Neurochir Suppl 108:183–186CrossRefPubMedGoogle Scholar
  41. 41.
    Kabir S, Gupta S, Casey A (2010) Lumbar interspinous spacers. Spine 35(25):E1499–E1506. doi: 10.1097/brs.0b013e3181e9af93 CrossRefPubMedGoogle Scholar
  42. 42.
    Richter A, Schütz C, Hauck M, Halm H (2009) Does an interspinous device (Coflex™) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients. Eur Spine J 19(2):283–289. doi: 10.1007/s00586-009-1229-9 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Barbagallo G, Olindo G, Corbino L, Albanese V (2009) Analysis of complications in patients treated with the X-STOP interspinous process decompression system. Neurosurgery 65(1):111–120. doi: 10.1227/01.neu.0000346254.07116.31 CrossRefPubMedGoogle Scholar
  44. 44.
    Errico T, Kamerlink J, Quirno M, Samani J, Chomiak R (2009) Survivorship of Coflex Interlaminar-Interspinous Implant. SAS J 3(2):59–67. doi: 10.1016/s1935-9810(09)70008-8 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lauryssen C (2007) Appropriate selection of patients with lumbar spinal stenosis for interspinous process decompression with the X STOP device. Neurosurg Focus 22(1):1–7. doi: 10.3171/foc.2007.22.1.5 CrossRefGoogle Scholar
  46. 46.
    Floman Y, Millgram M, Smorgick Y, Rand N, Ashkenazi E (2007) Failure of the Wallis interspinous implant to lower the incidence of recurrent lumbar disc herniations in patients undergoing primary disc excision. J Spinal Disord Tech 20(5):337–341. doi: 10.1097/bsd.0b013e318030a81d CrossRefPubMedGoogle Scholar
  47. 47.
    Bono C, Vaccaro A (2007) Interspinous process devices in the lumbar spine. Contemp Spine Surg 8(9):1–7. doi: 10.1097/01.css.0000285189.75055.51 CrossRefGoogle Scholar
  48. 48.
    Chiu JC (2006) Interspinous process decompression (IPD) system (X-STOP) for the treatment of lumbar spinal stenosis. Surg Tech Int 15:265–275Google Scholar
  49. 49.
    Xu C, Ni W, Tian N, Hu X, Li F, Xu H (2013) Complications in degenerative lumbar disease treated with a dynamic interspinous spacer (Coflex). Int Orthop (SICOT) 37(11):2199–2204. doi: 10.1007/s00264-013-2006-2 CrossRefGoogle Scholar
  50. 50.
    König S, Spetzger U (2014) Modified open-door laminoplasty for the surgical treatment of cervical spondylotic myelopathy in elderly patients. Acta Neurochirg 156(6):1225–1230. doi: 10.1007/s00701-014-2078-9 CrossRefGoogle Scholar
  51. 51.
    Sah S, Wang L, Dahal M, Acharya P, Dwivedi R (2012) Surgical management of cervical spondylotic myelopathy. J Nep Med Assoc 52(188):172–177Google Scholar
  52. 52.
    Chen Y, Wang X, Chen D, Miao J, Liao X, Yu F (2014) Posterior hybrid technique for ossification of the posterior longitudinal ligament associated with segmental instability in the cervical spine. J Spinal Disord Tech 27(4):240–244. doi: 10.1097/bsd.0b013e31825c6e2f CrossRefPubMedGoogle Scholar
  53. 53.
    Mitsunaga L, Klineberg E, Gupta M (2012) Laminoplasty techniques for the treatment of multilevel cervical stenosis. Adv Orthop. doi: 10.1155/2012/307916 PubMedPubMedCentralGoogle Scholar
  54. 54.
    Neo M, Fujibayashi S, Takemoto M, Nakamura T (2011) Clinical results of and patient satisfaction with cervical laminoplasty for considerable cord compression with only slight myelopathy. Eur Spine J 21(2):340–346. doi: 10.1007/s00586-011-2050-9 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hirabayashi S, Yamada H, Motosuneya T et al (2010) Comparison of enlargement of the spinal canal after cervical laminoplasty: open-door type and double-door type. Eur Spine J 19(10):1690–1694. doi: 10.1007/s00586-010-1369-y CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yanase M, Matsuyama Y, Mori K et al (2010) Intraoperative spinal cord monitoring of C5 palsy after cervical laminoplasty. J Spinal Disord Tech 23(3):170–175. doi: 10.1097/bsd.0b013e31819e91b4 CrossRefPubMedGoogle Scholar
  57. 57.
    Pang CH, Leung HB, Yen CH (2009) Laminoplasty after anterior spinal fusion for cervical spondylotic myelopathy. J Orthop Surg 17(3):269–274CrossRefGoogle Scholar
  58. 58.
    Vitarbo E, Sheth R, Levi A (2007) Open-door expansile cervical laminoplasty. Neurosurgery 60(SUPPLEMENT 1):154–159. doi: 10.1227/01.neu.0000215353.94448.16 Google Scholar
  59. 59.
    Takeuchi K, Yokoyama T, Aburakawa S et al (2006) Postoperative changes at the lower end of cervical laminoplasty. J Spinal Disord Tech 19(6):402–406. doi: 10.1097/00024720-200608000-00005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France SAS 2017

Authors and Affiliations

  • Ioannis D. Gelalis
    • 1
  • Dimitrios V. Papadopoulos
    • 1
    • 2
    Email author
  • Dionysios K. Giannoulis
    • 1
  • Andreas G. Tsantes
    • 1
  • Anastasios V. Korompilias
    • 1
  1. 1.Department of ΟrthopedicsUniversity Hospital of IoanninaIoanninaGreece
  2. 2.IoanninaGreece

Personalised recommendations