Advertisement

Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits

  • Jan Lesensky
  • Daniel E. PrinceEmail author
Expert's Opinion • PAEDIATRIC - TUMORS

Abstract

Successful cure is achieved in almost 70% of patients with primary bone sarcomas with currently available therapies. Some soft tissue sarcomas require wide bone resection in order to achieve appropriate margins for cure of disease, and patients undergoing these procedures need durable reconstruction. Biological reconstruction has been shown to provide patients with superior long-term results over other alternatives. Distraction osteogenesis is well studied in the correction of deformities as well as in addressing some congenital musculoskeletal pathologies. The use of this technique in tumor settings has been avoided by many surgeons for a multitude of concerns, including infection risk, potential tumor activation, and uncertainty regarding the effect of systemic therapy on the callus regenerate. We review the use of this reconstruction technique using cases from our institutional experience to illustrate its incorporation into the successful management of orthopedic oncology patients. Distraction osteogenesis is an effective method for reconstructing even large bony defects and is safe in the setting of systemic therapy. This technique has the potential to address some of the common problems associated with orthopedic oncology resection, such as infection and leg length discrepancy.

Keywords

Distraction osteogenesis Limb lengthening Oncology Reconstruction Primary bone tumor 

Notes

Funding

The authors received no funding for the preparation of this review article.

Compliance with ethical standards

Conflicts of interest

J. Lesensky and D. Prince have no conflicts of interest to disclose.

References

  1. 1.
    Eyre R, Feltbower RG, James PW, Blakey K, Mubwandarikwa E, Forman D, McKinney PA, Pearce MS, McNally RJ (2010) The epidemiology of bone cancer in 0–39 year olds in northern England, 1981–2002. BMC Cancer 10:357. doi: 10.1186/1471-2407-10-357 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rougraff BT, Simon MA, Kneisl JS, Greenberg DB, Mankin HJ (1994) Limb salvage compared with amputation for osteosarcoma of the distal end of the femur: a long-term oncological, functional, and quality-of-life study. J Bone Joint Surg Am 76(5):649–656CrossRefPubMedGoogle Scholar
  3. 3.
    Hejna MJ, Gitelis S (1997) Allograft prosthetic composite replacement for bone tumors. Semin Surg Oncol 13(1):18–24CrossRefPubMedGoogle Scholar
  4. 4.
    Gitelis S, Piasecki P (1991) Allograft prosthetic composite arthroplasty for osteosarcoma and other aggressive bone tumors. Clin Orthop Relat Res 270:197–201Google Scholar
  5. 5.
    Biau DJ, Dumaine V, Babinet A, Tomeno B, Anract P (2007) Allograft-prosthesis composites after bone tumor resection at the proximal tibia. Clin Orthop Relat Res 456:211–217. doi: 10.1097/BLO.0b013e31802ba478 CrossRefPubMedGoogle Scholar
  6. 6.
    Abdeen A, Hoang BH, Athanasian EA, Morris CD, Boland PJ, Healey JH (2009) Allograft-prosthesis composite reconstruction of the proximal part of the humerus: functional outcome and survivorship. J Bone Joint Surg Am 91(10):2406–2415. doi: 10.2106/JBJS.H.00815 CrossRefPubMedGoogle Scholar
  7. 7.
    Ortiz-Cruz E, Gebhardt MC, Jennings LC, Springfield DS, Mankin HJ (1997) The results of transplantation of intercalary allografts after resection of tumors: a long-term follow-up study. J Bone Joint Surg Am 79(1):97–106CrossRefPubMedGoogle Scholar
  8. 8.
    Donati D, Capanna R, Campanacci D, Del Ben M, Ercolani C, Masetti C, Taminiau A, Exner GU, Dubousset JF, Paitout D et al (1993) The use of massive bone allografts for intercalary reconstruction and arthrodeses after tumor resection: a multicentric European study. Chir Organi Mov 78(2):81–94PubMedGoogle Scholar
  9. 9.
    Matejovsky Z Jr, Matejovsky Z, Kofranek I (2006) Massive allografts in tumour surgery. Int Orthop 30(6):478–483. doi: 10.1007/s00264-006-0223-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mankin HJ, Springfield DS, Gebhardt MC, Tomford WW (1992) Current status of allografting for bone tumors. Orthopedics 15(10):1147–1154PubMedGoogle Scholar
  11. 11.
    Thompson RC Jr, Pickvance EA, Garry D (1993) Fractures in large-segment allografts. J Bone Joint Surg Am 75(11):1663–1673CrossRefPubMedGoogle Scholar
  12. 12.
    Hornicek FJ, Gebhardt MC, Tomford WW, Sorger JI, Zavatta M, Menzner JP, Mankin HJ (2001) Factors affecting nonunion of the allograft-host junction. Clin Orthop Relat Res 382:87–98CrossRefGoogle Scholar
  13. 13.
    Donati D, Di Liddo M, Zavatta M, Manfrini M, Bacci G, Picci P, Capanna R, Mercuri M (2000) Massive bone allograft reconstruction in high-grade osteosarcoma. Clin Orthop Relat Res 377:186–194CrossRefGoogle Scholar
  14. 14.
    Mroz TE, Joyce MJ, Steinmetz MP, Lieberman IH, Wang JC (2008) Musculoskeletal allograft risks and recalls in the United States. J Am Acad Orthop Surg 16(10):559–565CrossRefPubMedGoogle Scholar
  15. 15.
    Shehadeh A, Noveau J, Malawer M, Henshaw R (2010) Late complications and survival of endoprosthetic reconstruction after resection of bone tumors. Clin Orthop Relat Res 468(11):2885–2895. doi: 10.1007/s11999-010-1454-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grimer RJ, Aydin BK, Wafa H, Carter SR, Jeys L, Abudu A, Parry M (2016) Very long-term outcomes after endoprosthetic replacement for malignant tumours of bone. Bone Joint J 98-B(6):857–864. doi: 10.1302/0301-620X.98B6.37417 CrossRefPubMedGoogle Scholar
  17. 17.
    Ruggieri P, Mavrogenis AF, Pala E, Romantini M, Manfrini M, Mercuri M (2013) Outcome of expandable prostheses in children. J Pediatr Orthop 33(3):244–253. doi: 10.1097/BPO.0b013e318286c178 CrossRefPubMedGoogle Scholar
  18. 18.
    Antia NH, Buch VI (1971) Transfer of an abdominal dermo-fat graft by direct anastomosis of blood vessels. Br J Plast Surg 24(1):15–19CrossRefPubMedGoogle Scholar
  19. 19.
    Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg 55(5):533–544CrossRefPubMedGoogle Scholar
  20. 20.
    Weiland AJ (1984) Vascularized bone transfers. Instr Course Lect 33:446–460PubMedGoogle Scholar
  21. 21.
    Wood MB (1990) Femoral reconstruction by vascularized bone transfer. Microsurgery 11(1):74–79CrossRefPubMedGoogle Scholar
  22. 22.
    Muramatsu K, Ihara K, Doi K, Shigetomi M, Hashimoto T, Taguchi T (2006) Reconstruction of massive femur defect with free vascularized fibula graft following tumor resection. Anticancer Res 26(5):3679–3683PubMedGoogle Scholar
  23. 23.
    Capanna R, Campanacci DA, Belot N, Beltrami G, Manfrini M, Innocenti M, Ceruso M (2007) A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft: long-term results and comparison with alternative techniques. Orthop Clin North Am 38(1):51–60. doi: 10.1016/j.ocl.2006.10.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Ceruso M, Taddei F, Bigazzi P, Manfrini M (2008) Vascularised fibula graft inlaid in a massive bone allograft: considerations on the bio-mechanical behaviour of the combined graft in segmental bone reconstructions after sarcoma resection. Injury 39(Suppl 3):S68–S74. doi: 10.1016/j.injury.2008.05.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Pho RW, Levack B, Satku K, Patradul A (1985) Free vascularised fibular graft in the treatment of congenital pseudarthrosis of the tibia. J Bone Joint Surg Br 67(1):64–70CrossRefPubMedGoogle Scholar
  26. 26.
    Hsu LC, Yau AC, O’Brien JP, Hodgson AR (1972) Valgus deformity of the ankle resulting from fibular resection for a graft in subtalar fusion in children. J Bone Joint Surg Am 54(3):585–594CrossRefPubMedGoogle Scholar
  27. 27.
    Nathan SS, Hung-Yi L, Disa JJ, Athanasian E, Boland P, Cordeiro PG, Healey JH (2005) Ankle instability after vascularized fibular harvest for tumor reconstruction. Ann Surg Oncol 12(1):57–64. doi: 10.1007/s10434-004-1162-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Li P, Fang Q, Qi J, Luo R, Sun C (2015) Risk factors for early and late donor-site morbidity after free fibula flap harvest. J Oral Maxillofac Surg 73(8):1637–1640. doi: 10.1016/j.joms.2015.01.036 CrossRefPubMedGoogle Scholar
  29. 29.
    Tsuchiya H, Shirai T, Morsy AF, Sakayama K, Wada T, Kusuzaki K, Sugita T, Tomita K (2008) Safety of external fixation during postoperative chemotherapy. J Bone Joint Surg Br 90(7):924–928. doi: 10.1302/0301-620X.90B7.20674 CrossRefPubMedGoogle Scholar
  30. 30.
    Parameswaran AD, Roberts CS, Seligson D, Voor M (2003) Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma 17(7):503–507CrossRefPubMedGoogle Scholar
  31. 31.
    Patterson MM (2005) Multicenter pin care study. Orthop Nurs 24(5):349–360CrossRefPubMedGoogle Scholar
  32. 32.
    Cavusoglu AT, Er MS, Inal S, Ozsoy MH, Dincel VE, Sakaogullari A (2009) Pin site care during circular external fixation using two different protocols. J Orthop Trauma 23(10):724–730. doi: 10.1097/BOT.0b013e3181abbc31 CrossRefPubMedGoogle Scholar
  33. 33.
    Ferreira N, Marais LC (2012) Prevention and management of external fixator pin track sepsis. Strateg Trauma Limb Reconstr 7(2):67–72. doi: 10.1007/s11751-012-0139-2 CrossRefGoogle Scholar
  34. 34.
    Harris NL, Eilert RE, Davino N, Ruyle S, Edwardson M, Wilson V (1994) Osteogenic sarcoma arising from bony regenerate following Ilizarov femoral lengthening through fibrous dysplasia. J Pediatr Orthop 14(1):123–129CrossRefPubMedGoogle Scholar
  35. 35.
    Qu N, Yao W, Cui X, Zhang H (2015) Malignant transformation in monostotic fibrous dysplasia: clinical features, imaging features, outcomes in 10 patients, and review. Medicine (Baltimore) 94(3):e369. doi: 10.1097/MD.0000000000000369 CrossRefGoogle Scholar
  36. 36.
    Ruggieri P, Sim FH, Bond JR, Unni KK (1994) Malignancies in fibrous dysplasia. Cancer 73(5):1411–1424CrossRefPubMedGoogle Scholar
  37. 37.
    Sadeghi SM, Hosseini SN (2011) Spontaneous conversion of fibrous dysplasia into osteosarcoma. J Craniofac Surg 22(3):959–961. doi: 10.1097/SCS.0b013e31820fe2bd CrossRefPubMedGoogle Scholar
  38. 38.
    Doganavsargil B, Argin M, Kececi B, Sezak M, Sanli UA, Oztop F (2009) Secondary osteosarcoma arising in fibrous dysplasia, case report. Arch Orthop Trauma Surg 129(4):439–444. doi: 10.1007/s00402-008-0669-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Domson GF, Shahlaee A, Reith JD, Bush CH, Gibbs CP (2009) Infarct-associated bone sarcomas. Clin Orthop Relat Res 467(7):1820–1825. doi: 10.1007/s11999-009-0744-7 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Banfi A, Podesta M, Fazzuoli L, Sertoli MR, Venturini M, Santini G, Cancedda R, Quarto R (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92(9):2419–2428CrossRefPubMedGoogle Scholar
  41. 41.
    Fan C, Cool JC, Scherer MA, Foster BK, Shandala T, Tapp H, Xian CJ (2009) Damaging effects of chronic low-dose methotrexate usage on primary bone formation in young rats and potential protective effects of folinic acid supplementary treatment. Bone 44(1):61–70. doi: 10.1016/j.bone.2008.09.014 CrossRefPubMedGoogle Scholar
  42. 42.
    Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C (2010) Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89(7):701–713. doi: 10.1007/s00277-009-0896-2 CrossRefPubMedGoogle Scholar
  43. 43.
    Cao J, Tan MH, Yang P, Li WL, Xia J, Du H, Tang WB, Wang H, Chen XW, Xiao HQ (2008) Effects of adjuvant chemotherapy on bone marrow mesenchymal stem cells of colorectal cancer patients. Cancer Lett 263(2):197–203. doi: 10.1016/j.canlet.2008.01.011 CrossRefPubMedGoogle Scholar
  44. 44.
    Watanabe K, Tsuchiya H, Sakurakichi K, Yamashiro T, Matsubara H, Tomita K (2007) Treatment of lower limb deformities and limb-length discrepancies with the external fixator in Ollier’s disease. J Orthop Sci 12(5):471–475. doi: 10.1007/s00776-007-1163-9 CrossRefPubMedGoogle Scholar
  45. 45.
    Kapukaya A, Subasi M, Arslan H, Tuzuner T, Selek S (2006) Technique and complications of callus distraction in the treatment of bone tumors. Arch Orthop Trauma Surg 126(3):157–163. doi: 10.1007/s00402-006-0123-8 CrossRefPubMedGoogle Scholar
  46. 46.
    Rohde RS, Puhaindran ME, Morris CD, Alektiar KM, Schupak KD, Healey JH, Athanasian EA (2010) Complications of radiation therapy to the hand after soft tissue sarcoma surgery. J Hand Surg Am 35(11):1858–1863. doi: 10.1016/j.jhsa.2010.08.030 CrossRefPubMedGoogle Scholar
  47. 47.
    Al-Absi E, Farrokhyar F, Sharma R, Whelan K, Corbett T, Patel M, Ghert M (2010) A systematic review and meta-analysis of oncologic outcomes of pre- versus postoperative radiation in localized resectable soft-tissue sarcoma. Ann Surg Oncol 17(5):1367–1374. doi: 10.1245/s10434-009-0885-7 CrossRefPubMedGoogle Scholar
  48. 48.
    Mahmoud O, Wolfson A (2011) Perioperative irradiation in extremity soft tissue sarcoma. Expert Rev Anticancer Ther 11(8):1233–1241. doi: 10.1586/era.11.95 CrossRefPubMedGoogle Scholar
  49. 49.
    Sheplan LJ, Juliano JJ (2010) Use of radiation therapy for patients with soft-tissue and bone sarcomas. Cleve Clin J Med 77(Suppl 1):S27–S29. doi: 10.3949/ccjm.77.s1.06 CrossRefPubMedGoogle Scholar
  50. 50.
    Tsuchiya H, Uehara K, Sakurakichi K, Watanabe K, Matsubara H, Tomita K (2005) Distraction osteogenesis after irradiation in a rabbit model. J Orthop Sci 10(6):627–633. doi: 10.1007/s00776-005-0945-1 CrossRefPubMedGoogle Scholar
  51. 51.
    Hak DJ (2011) Management of aseptic tibial nonunion. J Am Acad Orthop Surg 19(9):563–573CrossRefPubMedGoogle Scholar
  52. 52.
    Vcelak J, Matejovsky Z Jr, Kofranek I, Kubes R, Lesensky J (2017) Periprosthetic infection of the knee megaprosthesis following a resection of malignant tumours around the knee. Acta Chir Orthop Traumatol Cechoslov 84(1):46–51Google Scholar
  53. 53.
    Sala F, Thabet AM, Castelli F, Miller AN, Capitani D, Lovisetti G, Talamonti T, Singh S (2011) Bone transport for postinfectious segmental tibial bone defects with a combined Ilizarov/Taylor spatial frame technique. J Orthop Trauma 25(3):162–168. doi: 10.1097/BOT.0b013e3181e5e160 CrossRefPubMedGoogle Scholar
  54. 54.
    Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14(2):76–85CrossRefPubMedGoogle Scholar
  55. 55.
    Rozbruch SR, Pugsley JS, Fragomen AT, Ilizarov S (2008) Repair of tibial nonunions and bone defects with the Taylor Spatial Frame. J Orthop Trauma 22(2):88–95. doi: 10.1097/BOT.0b013e318162ab49 CrossRefPubMedGoogle Scholar
  56. 56.
    Brinker MR, O’Connor DP (2007) Outcomes of tibial nonunion in older adults following treatment using the Ilizarov method. J Orthop Trauma 21(9):634–642. doi: 10.1097/BOT.0b013e318156c2a2 CrossRefPubMedGoogle Scholar
  57. 57.
    Babiak I (2014) Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7. Int Wound J 11(5):476–482. doi: 10.1111/j.1742-481X.2012.01112.x CrossRefPubMedGoogle Scholar
  58. 58.
    Canadell J, Forriol F, Cara JA (1994) Removal of metaphyseal bone tumours with preservation of the epiphysis: physeal distraction before excision. J Bone Joint Surg Br 76(1):127–132PubMedGoogle Scholar
  59. 59.
    Betz M, Dumont CE, Fuchs B, Exner GU (2012) Physeal distraction for joint preservation in malignant metaphyseal bone tumors in children. Clin Orthop Relat Res 470(6):1749–1754. doi: 10.1007/s11999-011-2224-0 CrossRefPubMedGoogle Scholar
  60. 60.
    Tsuchiya H, Tomita K, Minematsu K, Mori Y, Asada N, Kitano S (1997) Limb salvage using distraction osteogenesis: a classification of the technique. J Bone Joint Surg Br 79(3):403–411CrossRefPubMedGoogle Scholar
  61. 61.
    Yoshida Y, Osaka S, Tokuhashi Y (2010) Analysis of limb function after various reconstruction methods according to tumor location following resection of pediatric malignant bone tumors. World J Surg Oncol 8:39. doi: 10.1186/1477-7819-8-39 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Watanabe K, Tsuchiya H, Yamamoto N, Shirai T, Nishida H, Hayashi K, Takeuchi A, Matsubara H, Nomura I (2013) Over 10-year follow-up of functional outcome in patients with bone tumors reconstructed using distraction osteogenesis. J Orthop Sci 18(1):101–109. doi: 10.1007/s00776-012-0327-4 CrossRefPubMedGoogle Scholar
  63. 63.
    McCoy TH Jr, Kim HJ, Cross MB, Fragomen AT, Healey JH, Athanasian EA, Rozbruch SR (2013) Bone tumor reconstruction with the Ilizarov method. J Surg Oncol 107(4):343–352. doi: 10.1002/jso.23217 CrossRefPubMedGoogle Scholar
  64. 64.
    Healey JH, Zimmerman PA, McDonnell JM, Lane JM (1990) Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res 256:280–285Google Scholar
  65. 65.
    Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437. doi: 10.2106/JBJS.D.02215 PubMedGoogle Scholar

Copyright information

© Springer-Verlag France SAS 2017

Authors and Affiliations

  1. 1.Orthopaedic Service, Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations