Advertisement

Preoperative digital planning versus postoperative outcomes in total hip arthroplasty using a calcar-guided short stem: frequent valgization can be avoided

  • Karl Philipp KutznerEmail author
  • Joachim Pfeil
  • Mark Predrag Kovacevic
Original Article • HIP - ARTHROPLASTY

Abstract

Introduction

Modern total hip arthroplasty is largely dependent on the successful preservation of hip geometry. Thus, a successful implementation of the preoperative planning is of great importance. The present study evaluates the accuracy of anatomic hip reconstruction predicted by 2D digital planning using a calcar-guided short stem of the newest generation.

Methods

A calcar-guided short stem was implanted in 109 patients in combination with a cementless cup using the modified anterolateral approach. Preoperative digital planning was performed including implant size, caput–collum–diaphyseal angle, offset, and leg length using mediCAD II software. A coordinate system and individual scale factors were implemented. Postoperative outcome was evaluated accordingly and was compared to the planning.

Results

Intraoperatively used stem sizes were within one unit of the planned stem sizes. The postoperative stem alignment showed a minor and insignificant (p = 0.159) mean valgization of 0.5° (SD 3.79°) compared to the planned caput–collum–diaphyseal angles. Compared to the planning, mean femoral offset gained 2.18 (SD 4.24) mm, while acetabular offset was reduced by 0.78 (SD 4.36) mm during implantation resulting in an increased global offset of 1.40 (SD 5.51) mm (p = 0.0094). Postoperative femoroacetabular height increased by a mean of 5.00 (SD 5.98) mm (p < 0.0001) compared to preoperative measures.

Discussion

Two-dimensional digital preoperative planning in calcar-guided short-stem total hip arthroplasty assures a satisfying implementation of the intended anatomy. Valgization, which has been frequently observed in previous short-stem designs, negatively affecting offset, can be avoided. However, surgeons have to be aware of a possible leg lengthening.

Keywords

Total hip arthroplasty Short stem Stem alignment Offset Valgization Digital planning Optimys 

Notes

Acknowledgements

We thank Dominik Pfluger (numeric data GmbH) for supporting statistical analysis.

Compliance with ethical standards

Conflict of interest

JP has received and may further receive payments or benefits from Mathys Ltd., Switzerland. KPK and MPK certify that they have no conflict of interest (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements) in connection with this article.

References

  1. 1.
    von Lewinski G, Floerkemeier T (2015) 10-year experience with short stem total hip arthroplasty. Orthopedics 38:S51–S56CrossRefGoogle Scholar
  2. 2.
    Jerosch J, Grasselli C, Kothny P (2012) Veränderungen von Offset, CCD-Winkel und Beinlänge nach Implantation einer metadiaphysär fixierten Kurzschaftprothese–eine radiologische Untersuchung. Zeitschrift Für Orthopädie Und Unfallchirurgie 150(1):20–26CrossRefPubMedGoogle Scholar
  3. 3.
    Babisch J (2013) Möglichkeiten der patientenindividuellen Hüftgelenkrekonstruktion und Knochenresektion bei Kurzschaftprothesen. In: Jerosch J (ed) Kurzschaftendoprothesen—Wo liegen die Unterschiede?. Deutscher Ärzte-Verlag, KölnGoogle Scholar
  4. 4.
    Höhle P, Schroeder SM, Pfeil J (2015) Comparison between preoperative digital planning and postoperative outcomes in 197 hip endoprothesis cases using short stem prostheses. Clin Biomech 30:46–52CrossRefGoogle Scholar
  5. 5.
    Della Valle AG, Comba F, Taveras N, Salvati EA (2008) The utility and precision of analogue and digital planning for total hip arthroplasty. Int Orthop 32:289–294CrossRefGoogle Scholar
  6. 6.
    Hossain M, Lewis J, Sinha A (2008) Digital pre-operative templating is more accurate in total hip replacement compared to analogue templating. Eur J Orthopaed Surg Traumat 18:577–580CrossRefGoogle Scholar
  7. 7.
    Iorio R, Siegel J, Specht LM, Tilzey JF, Hartman A, Healy WL (2009) A comparison of acetate vs digital templating for preoperative planning of total hip arthroplasty: Is digital templating accurate and safe? J Arthroplasty 24:175–179CrossRefPubMedGoogle Scholar
  8. 8.
    Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplasty 24:646–651CrossRefPubMedGoogle Scholar
  9. 9.
    McCabe JP (1998) Dislocation following total hip arthroplasty. Curr Opin Orthop 9(1):9–13CrossRefGoogle Scholar
  10. 10.
    McGrory BJ, Morrey BF, Cahalan TD, An KN, Cabanela ME (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg (Br) 77:865–869Google Scholar
  11. 11.
    Yamaguchi T, Naito M, Asayama I, Ishiko T (2004) Total hip arthroplasty: the relationship between posterolateral reconstruction, abductor muscle strength, and femoral offset. J Orthop Surg (Hong Kong) 12:164–167CrossRefGoogle Scholar
  12. 12.
    Charles MN, Bourne RB, Davey JR, Greenwald AS, Morrey BF, Rorabeck CH (2005) Soft-tissue balancing of the hip: the role of femoral offset restoration. Instr Course Lect 54:131–141PubMedGoogle Scholar
  13. 13.
    Boese CK, Dargel J, Oppermann J, Eysel P, Scheyerer MJ, Bredow J, Lechler P (2016) The femoral neck-shaft angle on plain radiographs: a systematic review. Skelet Radiol 45:19–28CrossRefGoogle Scholar
  14. 14.
    Pfeil J (2010) The anterolateral approach with the patient in supine position. In: Pfeil J, Siebert WE (eds) Minimal invasive surgery in total hip replacement. Springer, Heidelberg, pp 63–78CrossRefGoogle Scholar
  15. 15.
    Davilla JA, Kransdorf MJ, Duffy GP (2006) Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size. Skelet Radiol 35:309–393Google Scholar
  16. 16.
    Della Valle AG, Slullitel G, Piccaliga F, Salvati EA (2005) The precision and usefulness of preoperative planning for cemented and hybrid total hip arthroplasty. J Arthroplasty 20:51–58CrossRefGoogle Scholar
  17. 17.
    Suh KT, Cheon SJ, Kim DW (2004) Comparison of preoperative templating with postoperative assessment in cementless total hip arthroplasty. Acta Orthop Scand 75:40–44CrossRefPubMedGoogle Scholar
  18. 18.
    Austin MS, Hozack WJ, Sharkey PF, Rothman RH (2003) Stability and leg length equality in total hip arthroplasty. J Arthroplasty 18:88–90CrossRefPubMedGoogle Scholar
  19. 19.
    Della Valle AG, Padgett DE, Salvati EA (2005) Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 13:455–462CrossRefPubMedGoogle Scholar
  20. 20.
    Eggli S, Pisan M, Muller ME (1998) The value of preoperative planning for total hip arthroplasty. J Bone Joint Surg Br 80:382–390CrossRefPubMedGoogle Scholar
  21. 21.
    Phillips NJ, Stockley I, Wilkinson JM (2002) Direct plain radiography methods versus EBRA-Digital for measuring implant migration after total hip arthroplasty. J Arthroplasty 17:917–925CrossRefPubMedGoogle Scholar
  22. 22.
    Ramsperger R, Lubinus P (1996) Präoperative Planung in der Hüftendoprothetik: vorstellung eines computer-gestützen Systems unter Verwendung von CAD-Software. Chirurg 67:734–739PubMedGoogle Scholar
  23. 23.
    Schröder SM (2011) Prädiktion und Qualitätsverbesserung in der Hüftendoprothetik durch digitale Planung bezüglich des Prothesentyps, der Prothesengröße, der Beinlänge, des Offsets und des Pfannenreinigungswinkels. Dissertation, University of Heidelberg, Germany. http://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=67198808
  24. 24.
    Wedemeyer C, Quitmann H, Xu J, Heep H, von Knoch M, Saxler G (2008) Digital templating in total hip arthroplasty with the Mayo stem. Arch Orthop Trauma Surg 128:1023–1029CrossRefPubMedGoogle Scholar
  25. 25.
    Kutzner KP, Kovacevic MP, Roeder C, Rehbein P, Pfeil J (2015) Reconstruction of femoro-acetabular offsets using a short-stem. Int Orthop 39:1269–1275CrossRefPubMedGoogle Scholar
  26. 26.
    Schmidutz F, Steinbruck A, Wanke-Jellinek L, Pietschmann M, Jansson V, Fottner A (2012) The accuracy of digital templating: a comparison of short-stem total hip arthroplasty and conventional total hip arthroplasty. Int Orthop 36:1767–1772CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kosashvili Y, Shasha N, Olschewski E, Safir O, White L, Gross A, Backstein D (2009) Digital versus conventional templating techniques in preoperative planning for total hip arthroplasty. Canad J Surg 52:6–11PubMedPubMedCentralGoogle Scholar
  28. 28.
    The B, Diercks RL, van Ooijen PM, van Horn JR (2005) Comparison of analog and digital preoperative planning in total hip and knee arthroplasties. A prospective study of 173 hips and 65 total knees. Acta Orthop 76:78–84CrossRefPubMedGoogle Scholar
  29. 29.
    Gargiulo P, Petursson T, Magnusson B, Bifulco P, Cesarelli M, Izzo GM, Magnusdottir G, Halldorsson G, Ludvigsdottir GK, Tribel J, Jonsson H Jr (2013) Assessment of total hip arthroplasty by means of computed tomography 3D models and fracture risk evaluation. Artif Organs 37:567–573CrossRefPubMedGoogle Scholar
  30. 30.
    Hassani H, Cherix S, Ek ET, Rudiger HA (2014) Comparisons of preoperative three-dimensional planning and surgical reconstruction in primary cementless total hip arthroplasty. J Arthroplasty 29:1273–1277CrossRefPubMedGoogle Scholar
  31. 31.
    Kyo T, Nakahara I, Kuroda Y, Miki H (2015) Effects of coordinate-system construction methods on postoperative computed tomography evaluation of implant orientation after total hip arthroplasty. Comput Aided Surg 20:52–60CrossRefPubMedGoogle Scholar
  32. 32.
    Otomaru I, Nakamoto M, Kagiyama Y, Takao M, Sugano N, Tomiyama N, Tada Y, Sato Y (2012) Automated preoperative planning of femoral stem in total hip arthroplasty from 3D CT data: atlas-based approach and comparative study. Med Image Anal 16:415–426CrossRefPubMedGoogle Scholar
  33. 33.
    Zeng Y, Lai OJ, Shen B, Yang J, Zhou ZK, Kang PD, Pei FX, Zhou X (2014) Three-dimensional computerized preoperative planning of total hip arthroplasty with high-riding dislocation developmental dysplasia of the hip. Orthop Surg 6:95–102CrossRefPubMedGoogle Scholar
  34. 34.
    Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20:414–420CrossRefPubMedGoogle Scholar
  35. 35.
    Johnston TL, Schenker ML, Briggs KK, Philippon MJ (2008) Relationship between offset angle alpha and hip chondral injury in femoroacetabular impingement. Arthroscopy 24:669–675CrossRefPubMedGoogle Scholar
  36. 36.
    Malik A, Maheshwari A, Dorr LD (2007) Impingement with total hip replacement. J Bone Joint Surg Am 89:1832–1842PubMedGoogle Scholar
  37. 37.
    Sakalkale DP, Sharkey PF, Eng K, Hozack WJ, Rothman RH (2001) Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthopaed Rel Res 338:125–134CrossRefGoogle Scholar
  38. 38.
    Jerosch J (2012) Kurzschaftendoprothesen: Wo liegen die Unterschiede?. Deutscher Ärzteverlag, Cologne, p 234Google Scholar
  39. 39.
    Jerosch J, Funken S (2004) Change of offset after implantation of hip alloarthroplasties. Unfallchirurg 107:475–482CrossRefPubMedGoogle Scholar
  40. 40.
    Massin P, Geais L, Astoin E, Simondi M, Lavaste F (2000) The anatomic basis for the concept of lateralized femoral stems: a frontal plane radiographic study of the proximal femur. J Arthroplasty 15:93–101CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  • Karl Philipp Kutzner
    • 1
    Email author
  • Joachim Pfeil
    • 1
  • Mark Predrag Kovacevic
    • 2
  1. 1.Department for Orthopaedic Surgery and TraumatologySt. Josefs Hospital WiesbadenWiesbadenGermany
  2. 2.Clinic for Traumatology, Hand- and Orthopaedic SurgeryHELIOS Dr. Horst Schmidt Clinics WiesbadenWiesbadenGermany

Personalised recommendations