Thermomechanical method for cement extraction in revision arthroplasty

  • M. Ghanem
  • A. Koenig
  • F. Dehn
  • C.-E. Heyde
  • C. Josten
Original Article • HIP - BIOMATERIALS



In joint revision surgery, bone cement extraction remains a major challenge which even today has not seen a satisfactory solution yet. We studied in an experimental setting the impact of heat sources on the mechanical properties and microstructure of bone cement and determined the glass transition temperature (T G) of bone cement. As a result, it would be possible to establish a thermomechanical method which makes use of the structural and material-specific property changes inherent in bone cement at elevated temperatures.


Prepared samples of polymerized bone cement were thermoanalyzed with a Netzsch STA 409 C thermal analyzer. Samples weighing approx. 55 mg were heated to 390 °C at a rate of 5 K/min. Both simultaneous differential thermal analysis and thermogravimetry were employed. The thermomechanically induced changes in the microstructure of the material were analyzed with a computed tomography scanner specifically developed for materials testing (3D-μXCT).


The bone cement changed from a firm elastic state over entropy-plastic (air atmosphere 60–155 °C) to a plastic viscosity state (air atmosphere >155 °C). Between 290 and 390 °C, the molten mass disintegrated (decomposition temperature).


Our study was able to determine the glass transition temperature (T G) of bone cement which was about 60 and 65 °C under air and nitrogen, respectively. Heating the dry bone cement up to at least 65 °C would be more than halve the strength needed to detach it. Bone cement extraction would then be easy and swift.


Thermomechanical method Bone cement extraction Glass transition temperature 



This study was supported by the German Arthritis Society.

Author’s contribution

MG contributed to the idea of this work, literature study, analysis of experiments and results, discussion; AK was involved in literature study, analysis of experiments and results, discussion; FD, CEH and CJ were involved in review and amendment of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Statistisches Bundesamt (Hrsg) (2011) Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik). Diagnosen, Prozeduren, Fallpauschalen und Case Mix der vollstationären Patientinnen und Patienten in Krankenhäusern. Wiesbaden Fachserie 12 Reihe 6.4, 2012, WiesbadenGoogle Scholar
  2. 2.
    Trampuz A, Widmer AF (2006) Infections associated with orthopedic implants. Curr Opin Infect Dis 19:349–356CrossRefPubMedGoogle Scholar
  3. 3.
    Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519CrossRefPubMedGoogle Scholar
  4. 4.
    Malchau H, Herberts P, Eisler T, Garellick G, Soderman P (2002) The Swedish total hip replacement register. J Bone Joint Surg Am 84-A(Suppl 2):2–20CrossRefGoogle Scholar
  5. 5.
    Busch CA, Charles MN, Haydon CM (2005) Fractures of distally-fixed femoral stems after revision arthroplasty. J Bone Joint Surg Br 07:1333–1336CrossRefGoogle Scholar
  6. 6.
    Egan KJ, Di Cesare PE (1995) Intraoperative complications of revision hip arthroplasty using a fully porous-coated straight cobalt-chrome femoral stem. J Arthroplast 10(Suppl):S45–S51CrossRefGoogle Scholar
  7. 7.
    Porsch M, Schmidt J, Raabe T (1999) Possibilities of avoiding an Intra-femoral increase in pressure during hip revision surgery. Biomed Tech (Berl) 44:142–145CrossRefGoogle Scholar
  8. 8.
    Gray FB (1992) Total hip revision arthroplasty: prosthesis and cement removal techniques. Orthrop Clin North Am 23:313–319Google Scholar
  9. 9.
    Miller ME, Davis ML, MacClean CR, Davis JG, Smith BL, Humphries JR (1983) Radiation exposure and associated risks to operating-room personnel during use of fluoroscopic guidance for selected orthopaedic surgical procedures. J Bone Joint Surg Am 65:1–4CrossRefPubMedGoogle Scholar
  10. 10.
    Akiyama H, Kawanabe K, Goto K, Ohnishi E, Nakamura T (2007) Computer-assisted fluoroscopic navigation system for removal of distal femoral bone cement in revision total hip arthroplasty. J Arthroplasty 22:445–448CrossRefPubMedGoogle Scholar
  11. 11.
    Mumme T, Friedrich MJ, Rode H, Gravius S, Andereya S, Müller-Rath R, de la Fuente M (2015) Femoral cement extraction in revision total hip arthroplasty—an in vitro study comparing computer assisted freehand-navigated cement removal to conventional cement extraction. Biomed Eng Biomed Tech 60(6):567–575Google Scholar
  12. 12.
    Schwaller CA, Elke R (2001) Zemententfernung mit Ultraschall bei Revisionen von Hüfttotalendoprothesen. Orthopäde 30:310–316CrossRefPubMedGoogle Scholar
  13. 13.
  14. 14.
    Wiesiolek AK (2010) Experimentelle Evaluation neuer Knochenzemente und Vergleich verschiedener Zementiertechniken. Dissertation Albert-Ludwigs-Universität FreiburgGoogle Scholar
  15. 15.
    DIN EN ISO 527-1 (2012) Kunststoffe—Bestimmung der Zugeigenschaften—Teil 1: Allgemeine Grundsätze, Beuth Verlag, Ausgabe 06/2012Google Scholar
  16. 16.
    DIN EN ISO 527-2 (2012) Kunststoffe—Bestimmung der Zugeigenschaften—Teil 2: Prüfbedingungen für Form—und Extrusionsmassen, Beuth Verlag, Ausgabe 06/2012Google Scholar
  17. 17.
    DIN E 53455 (1998) Prüfung von Kunststoffen; Zugversuch, Beuth Verlag, Ausgabe 08/1998Google Scholar
  18. 18.
    Kühn K-D (2013) PMMA cements. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Lewis G (1999) Effect of mixing method and storage temperature of cement constituents on the fatigue and porosity of acrylic bone cement. J Biomed Mater Res 48:143–149CrossRefPubMedGoogle Scholar
  20. 20.
    Yamamura M, Nakamura N, Miki H, Nishii T, Sugano N (2013) Cement removal from the femur using the ROBODOC system in revision total hip arthroplasty. Adv Orthrop 2013(2013):347358Google Scholar
  21. 21.
    Goldberg SH, Studders EM, Cohen MS (2007) Ultrasonic cement removal in revision arthroplasty. Orthopedics 2007(30):632–635Google Scholar
  22. 22.
    Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50:101CrossRefPubMedGoogle Scholar
  23. 23.
    Matthews LS, Hirsch C (1972) Temperatures measured in cortical bone when drilling. J Bone Joint Surg 54A(297):1972Google Scholar
  24. 24.
    Brooks A, Nelson C, Stewart C, Skinner R, Siems M (1993) Effect of an ultrasonic device on temperatures generated in bone and on bone-cement structure. J Arthroplast 8:413–418CrossRefGoogle Scholar
  25. 25.
    Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242–246CrossRefPubMedGoogle Scholar
  26. 26.
    Zoccali G, Cinque B, La Torre C, Lombardi F, Palumbo P, Romano L, Mattei A, Orsini G, Cifone MG, Giuliani M (2016) Improving the outcome of fractional CO2 laser resurfacing using a probiotic skin cream: preliminary clinical evaluation. Lasers Med Sci 31:1607–1611CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  • M. Ghanem
    • 1
  • A. Koenig
    • 2
  • F. Dehn
    • 2
  • C.-E. Heyde
    • 1
  • C. Josten
    • 1
  1. 1.Department of Orthopedic Surgery, Traumatology and Plastic SurgeryUniversity Hospital of LeipzigLeipzigGermany
  2. 2.Faculty of Chemistry and Mineralogy, Professorship of Multifunctional Construction MaterialsUniversity of LeipzigLeipzigGermany

Personalised recommendations