Combination of low-contact cerclage wiring and osteosynthesis in the treatment of femoral fractures

  • Andrea AngeliniEmail author
  • Concetto Battiato
Original Article • HIP - FRACTURES


Background and purpose

Objectives were (1) to evaluate results after cerclage wiring technique for femoral primary and periprosthetic fracture (PPF); (2) to report the incidence of complications and their treatment; (3) to analyze possible prognostic factors.

Patients and methods

We analyzed 54 patients treated with different techniques associated with low-contact cerclage wires for femoral fracture. Fractures were stratified according to AO, Vancouver or Rorabeck classification. Cerclage was used as an exclusive implant in four PPFs or combined with internal devices in 50 cases. Comorbidities were assessed using Charlson Comorbidity Index. The Glasgow Outcome Scale was used to compare activities of daily living pre/postoperatively.


Cerclage wires with three or four spacers were used in 22 and 32 cases, respectively. Nine patients died within 6 months. Mean follow-up of the remaining 42 patients was 10.5 months. Fracture healing was achieved in 38/42 patients (71 %), with a mean time to callus formation of 57 days and to radiographic union of 3 months (1.5–9 months). Four patients had nonunion. Survival to major complications was 92 and 70 % at 1 and 2 years, respectively, significantly better in cerclage wires with three spacers than those with four spacers (p = 0.0188). No other statistical correlations were found.


Cerclage wiring in difficult femoral fractures offers minimally invasive reduction and fixation technique, low cost and early holding. We reinforce the concept of “reduce with cerclage cables first, then nail” for displaced long subtrochanteric fractures and support the use of cerclage wiring for challenge PPF using low-contact wires.

Level of evidence

Therapeutic study, Level IV.


Periprosthetic fractures Femur Intramedullary nailing Osteosynthesis Percutaneous treatment MIPO 


Compliance with ethical standards

Conflict of interest

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements) that might pose a conflict of interest in connection with the submitted article.

Ethical statement

Our study involves human, but the retrospective study does not require approval in our country.


  1. 1.
    Angelini A, Battiato C (2015) Past and present of the use of cerclage wires in orthopedics. Eur J Orthop Surg Traumatol 25(4):623–635CrossRefPubMedGoogle Scholar
  2. 2.
    Perren SM, Fernandez Dell’Oca A, Lenz M, Windolf M (2011) Cerclage, evolution and potential of a Cinderella technology. An overview with reference to periprosthetic fractures. Acta Chir Orthop Traumatol Cech 78(3):190–199PubMedGoogle Scholar
  3. 3.
    Giannoudis PV, Kanakaris NK, Tsiridis E (2007) Principles of internal fixation and selection of implants for periprosthetic femoral fractures. Injury 38(6):669–687CrossRefPubMedGoogle Scholar
  4. 4.
    Kennedy MT, Mitra A, Hierlihy TG, Harty JA, Reidy D, Dolan M (2011) Subtrochanteric hip fractures treated with cerclage cables and long cephalomedullary nails: a review of 17 consecutive cases over 2 years. Injury 42(11):1317–1321CrossRefPubMedGoogle Scholar
  5. 5.
    Park SK, Kim YG, Kim SY (2011) Treatment of periprosthetic femoral fractures in hip arthroplasty. Clin Orthop Surg 3(2):101–106CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Graham SM, Mak JH, Moazen M, Leonidou A, Jones AC, Wilcox RK, Tsiridis E (2015) Periprosthetic femoral fracture fixation: a biomechanical comparison between proximal locking screws and cables. J Orthop Sci 20(5):875–880CrossRefPubMedGoogle Scholar
  7. 7.
    Lenz M, Perren SM, Gueorguiev B, Richards RG, Krause F, Fernandez Dell’Oca A, Hontzsch D, Windolf M (2012) Underneath the cerclage: an ex vivo study on the cerclage-bone interface mechanics. Arch Orthop Trauma Surg 132(10):1467–1472CrossRefPubMedGoogle Scholar
  8. 8.
    Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg [Br] 84:1093–1110CrossRefGoogle Scholar
  9. 9.
    Duncan CP, Masri BA (1995) Fractures of the femur after hip replacement. Instr Course Lect 44:293–304PubMedGoogle Scholar
  10. 10.
    Rorabeck CH, Taylor JW (1999) Periprosthetic fractures of the femur complicating total knee arthroplasty. Orthop Clin North Am 30(2):265–277CrossRefPubMedGoogle Scholar
  11. 11.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 40(5):373–383CrossRefPubMedGoogle Scholar
  12. 12.
    Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1(7905):480–484CrossRefPubMedGoogle Scholar
  13. 13.
    Franz KL (1998) Stand der Beurteilungsmöglichkeit der Prognose nach SHT-Vorbedingungen für eine Aussage über die Prognose. Neuro Trauma News 9:4–5Google Scholar
  14. 14.
    Ebraheim NA, Gomez C, Ramineni SK, Liu J (2009) Fixation of periprosthetic femoral shaft fractures adjacent to a well-fixed femoral stem with reversed distal femoral locking plate. J Trauma 66(4):1152–1157CrossRefPubMedGoogle Scholar
  15. 15.
    Xue H, Tu Y, Cai M, Yang A (2011) Locking compression plate and cerclage band for type B1 periprosthetic femoral fractures preliminary results at average 30-month follow-up. J Arthroplasty 26(3):467–471CrossRefPubMedGoogle Scholar
  16. 16.
    Apivatthakakul T, Phornphutkul C, Bunmaprasert T, Sananpanich K, Dell’Oca AF (2012) Percutaneous cerclage wiring and minimally invasive plate osteosynthesis (MIPO): a percutaneous reduction technique in the treatment of Vancouver type B1 periprosthetic femoral shaft fractures. Arch Orthop Trauma Surg 132(6):813–822CrossRefPubMedGoogle Scholar
  17. 17.
    Apivatthakakul T, Phornphutkul C (2012) Percutaneous cerclage wiring for reduction of periprosthetic and difficult femoral fractures. A technical note. Injury 43(6):966–971CrossRefPubMedGoogle Scholar
  18. 18.
    Nieves JW, Bilezikian JP, Lane JM, Einhorn TA, Wang Y, Steinbuch M, Cosman F (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21(3):399–408CrossRefPubMedGoogle Scholar
  19. 19.
    Ganz R, Mast J, Weber B, Perren SM (1991) Clinical aspects of biological plating. Injury 22:4–5Google Scholar
  20. 20.
    Zickel RE (1976) An intramedullary fixation device for the proximal part of the femur. None years experience. J Bone Joint Surg [Am] 58-A:866–872Google Scholar
  21. 21.
    Shukla S, Johnston P, Ahmad MA, Wynn-Jones H, Patel AD, Walton NP (2007) Outcome of traumatic subtrochanteric femoral fractures fixed using cephalo-medullary nails. Injury 38(11):1286–1293CrossRefPubMedGoogle Scholar
  22. 22.
    Tsiridis E, Pavlou G, Venkatesh R, Bobak P, Gie G (2009) Periprosthetic femoral fractures around hip arthroplasty: current concepts in their management. Hip Int. 19(2):75–86PubMedGoogle Scholar
  23. 23.
    Pike J, Davidson D, Garbuz D, Duncan CP, O’Brien PJ, Masri BA (2009) Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplasty. J Am Acad Orthop Surg 17(11):677–688CrossRefPubMedGoogle Scholar
  24. 24.
    Haddad FS, Duncan CP, Berry DJ, Lewallen DG, Gross AE, Chandler HP (2002) Periprosthetic femoral fractures around well-fixed implants: use of cortical onlay allografts with or without a plate. J Bone Joint Surg Am 84(6):945–950PubMedGoogle Scholar
  25. 25.
    Dennis MG, Simon JA, Kummer FJ, Koval KJ, DiCesare PE (2000) Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques. J Arthroplasty 15(4):523–528CrossRefPubMedGoogle Scholar
  26. 26.
    Buttaro MA, Farfalli G, Paredes Nunez M, Comba F, Piccaluga F (2007) Locking compression plate fixation of Vancouver type-B1 periprosthetic femoral fractures. J Bone Joint Surg Am 89(9):1964–1969CrossRefPubMedGoogle Scholar
  27. 27.
    Ricci WM, Borrelli J Jr (2007) Operative management of periprosthetic femur fractures in the elderly using biological fracture reduction and fixation techniques. Injury 38(Suppl 3):S53–S58CrossRefPubMedGoogle Scholar
  28. 28.
    Bottlang M, Doornink J, Lujan TJ, Fitzpatrick DC, Marsh JL, von Augat P, Rechenberg B, Lesser M, Madey SM (2010) Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am 92(Suppl 2):12–22CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Papakostidis C, Grotz MR, Papadokostakis G, Dimitriou R, Giannoudis PV (2006) Femoral biologic plate fixation. Clin Orthop Relat Res 450:193CrossRefPubMedGoogle Scholar
  30. 30.
    Kinov P, Volpin G, Sevi R, Tanchev PP, Antonov B, Hakim G (2015) Surgical treatment of periprosthetic femoral fractures following hip arthroplasty: our institutional experience. Injury 46(10):1945–1950CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Department of Orthopedics, Rizzoli Orthopedic InstituteUniversity of BolognaBolognaItaly
  2. 2.Department of Orthopedics and TraumatologyCivilian Hospital of Lugo (AUSL Romagna)LugoItaly
  3. 3.Department of Orthopedics and TraumatologyAscoli PicenoItaly

Personalised recommendations