Locked plating versus cephalomedullary nailing of unstable intertrochanteric femur fractures

  • Philipp N. StreubelEmail author
  • Michael Moustoukas
  • William T. Obremskey
Original Article • HIP - FRACTURES



Proximal femur locking plates (PFLP) have received increased attention as an alternative for the treatment of proximal femur fractures. However, recent clinical data on these implants has raised concern about higher than expected failure rates.


The purpose of the present study was to compare outcomes of unstable pertrochanteric femur fractures (AO/OTA 31A3) treated at a level-1 trauma center using either PFLP or cephalomedullary nailing (CMN).

Patients and methods

Sixty-two patients (31 PFLP and 31 CMN, 55 % female, average age 63 years, range 21–94) with 64 OTA 31A3 fractures (32 PFLP and 32 CMN) treated between 2003 and 2007 were retrospectively reviewed. No differences were found with regard to gender, BMI, diabetes and time to surgery.


One patient (5 %) in the CMN group underwent a reoperation (debridement with hardware removal), while eight PFLP patients (25 %) did (two debridements, two hardware removals, four nonunion repairs). One mechanical failure (5 %) occurred in the CMN group and 12 (38 %) in the PFLP group (p = 0.007). One nonunion (5 %) was observed in the CMN group, while 6 (19 %) occurred in the PFLP group.


A higher rate of reoperation and mechanical failure can be expected for unstable intertrochanteric femur fracture when treated with PFLP than with CMN.


Hip fracture Intertrochanteric femur fracture Locked plating Intramedullary nailing Internal fixation Complications 


Compliance with ethical standards

Conflict of interest

Dr. Streubel acts as consultant for Acumed LLC. Dr. Moustoukas and Dr. Obremskey declare that they have no conflict of interest.

Ethical standards

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Institutional review board approval was obtained for the entirety of this study.

Informed consent

Informed consent was not required given the retrospective nature of the study.


  1. 1.
    Ruecker AH, Rupprecht M, Gruber M, Gebauer M, Barvencik F, Briem D, Rueger JM (2009) The treatment of intertrochanteric fractures: results using an intramedullary nail with integrated cephalocervical screws and linear compression. J Orthop Trauma 23(1):22–30. doi: 10.1097/BOT.0b013e31819211b2 CrossRefPubMedGoogle Scholar
  2. 2.
    Simmermacher RK, Ljungqvist J, Bail H, Hockertz T, Vochteloo AJ, Ochs U, Werken C (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39(8):932–939. doi: 10.1016/j.injury.2008.02.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Utrilla AL, Reig JS, Munoz FM, Tufanisco CB (2005) Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma 19(4):229–233CrossRefPubMedGoogle Scholar
  4. 4.
    Sadowski C, Lubbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P (2002) Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 95 degrees screw-plate: a prospective, randomized study. J Bone Joint Surg Am 84-A(3):372–381PubMedGoogle Scholar
  5. 5.
    Klinger HM, Baums MH, Eckert M, Neugebauer R (2005) A comparative study of unstable per- and intertrochanteric femoral fractures treated with dynamic hip screw (DHS) and trochanteric butt-press plate vs. proximal femoral nail (PFN). Zentralbl Chir 130(4):301–306. doi: 10.1055/s-2005-836784 CrossRefPubMedGoogle Scholar
  6. 6.
    Krischak GD, Augat P, Beck A, Arand M, Baier B, Blakytny R, Gebhard F, Claes L (2007) Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate. Clin Biomech 22(10):1112–1118. doi: 10.1016/j.clinbiomech.2007.07.016 CrossRefGoogle Scholar
  7. 7.
    Crist BD, Lee MA, Khalafi AK, Hazelwood SJ (2006) A comparison of percutaneous versus traditional open plate fixation in a subtrochanteric fracture gap model. Basic science poster #71. In: Annual meeting of the Orthopaedic Trauma Association (OTA). Proceedings of the Annual Meeting of the Orthopaedic Trauma Association (OTA), Phoenix, ARGoogle Scholar
  8. 8.
    Glassner PJ, Tejwani NC (2011) Failure of proximal femoral locking compression plate: a case series. J Orthop Trauma 25(2):76–83. doi: 10.1097/BOT.0b013e3181e31ccc CrossRefPubMedGoogle Scholar
  9. 9.
    Hu SJ, Zhang SM, Yu GR (2012) Treatment of femoral subtrochanteric fractures with proximal lateral femur locking plates. Acta Ortopedica Brasileira 20(6):329–333. doi: 10.1590/s1413-78522012000600003 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim JW, Oh CW, Byun YS, Oh JK, Kim HJ, Min WK, Park SK, Park BC (2010) A biomechanical analysis of locking plate fixation with minimally invasive plate osteosynthesis in a subtrochanteric fracture model. J Trauma. doi: 10.1097/TA.0b013e3181d40418 Google Scholar
  11. 11.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audige L (2007) Fracture and dislocation classification compendium—2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 21(10 Suppl):S1–S133CrossRefPubMedGoogle Scholar
  12. 12.
    Saini P, Kumar R, Shekhawat V, Joshi N, Bansal M, Kumar S (2013) Biological fixation of comminuted subtrochanteric fractures with proximal femur locking compression plate. Injury 44(2):226–231. doi: 10.1016/j.injury.2012.10.037 CrossRefPubMedGoogle Scholar
  13. 13.
    Schneider K, Oh JK, Zderic I, Stoffel K, Richards RG, Wolf S, Gueorguiev B, Nork SE (2015) What is the underlying mechanism for the failure mode observed in the proximal femoral locking compression plate? A biomechanical study. Injury 46(8):1483–1490. doi: 10.1016/j.injury.2015.05.034 CrossRefPubMedGoogle Scholar
  14. 14.
    Wieser K, Babst R (2010) Fixation failure of the LCP proximal femoral plate 4.5/5.0 in patients with missing posteromedial support in unstable per-, inter-, and subtrochanteric fractures of the proximal femur. Arch Orthop Trauma Surg 130(10):1281–1287. doi: 10.1007/s00402-010-1074-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Wirtz C, Abbassi F, Evangelopoulos DS, Kohl S, Siebenrock KA, Kruger A (2013) High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury 44(6):751–756. doi: 10.1016/j.injury.2013.02.020 CrossRefPubMedGoogle Scholar
  16. 16.
    Crist BD, Khalafi A, Hazelwood SJ, Lee MA (2009) A biomechanical comparison of locked plate fixation with percutaneous insertion capability versus the angled blade plate in a subtrochanteric fracture gap model. J Orthop Trauma 23(9):622–627. doi: 10.1097/BOT.0b013e3181a2a31d CrossRefPubMedGoogle Scholar
  17. 17.
    Müller ME, Nazarian S, Koch P, Schatzker J (1990) The comprehensive classification of fractures of long bones. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Cowper DC, Kubal JD, Maynard C, Hynes DM (2002) A primer and comparative review of major US mortality databases. Ann Epidemiol 12(7):462–468CrossRefPubMedGoogle Scholar
  19. 19.
    Fillenbaum GG, Burchett BM, Blazer DG (2009) Identifying a national death index match. Am J Epidemiol 170(4):515–518. doi: 10.1093/aje/kwp155 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Haidukewych GJ, Israel TA, Berry DJ (2001) Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am 83-A(5):643–650PubMedGoogle Scholar
  21. 21.
    Hersche O, Heim D, Bodoky A, Regazzoni P (1989) 4 fragment fractures of the proximal femur: Is the dynamic hip screw a suitable implant? Helv Chir Acta 56(4):577–580PubMedGoogle Scholar
  22. 22.
    Whitelaw GP, Segal D, Sanzone CF, Ober NS, Hadley N (1990) Unstable intertrochanteric/subtrochanteric fractures of the femur. Clin Orthop Relat Res 252:238–245PubMedGoogle Scholar
  23. 23.
    Babst R, Renner N, Biedermann M, Rosso R, Heberer M, Harder F, Regazzoni P (1998) Clinical results using the trochanter stabilizing plate (TSP): the modular extension of the dynamic hip screw (DHS) for internal fixation of selected unstable intertrochanteric fractures. J Orthop Trauma 12(6):392–399CrossRefPubMedGoogle Scholar
  24. 24.
    Baumgaertner MR, Curtin SL, Lindskog DM (1998) Intramedullary versus extramedullary fixation for the treatment of intertrochanteric hip fractures. Clin Orthop Relat Res 348:87–94PubMedGoogle Scholar
  25. 25.
    Gotfried Y (2007) Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am 89(11):2552–2553 (author reply 2553)PubMedGoogle Scholar
  26. 26.
    Hardy DC, Descamps PY, Krallis P, Fabeck L, Smets P, Bertens CL, Delince PE (1998) Use of an intramedullary hip-screw compared with a compression hip-screw with a plate for intertrochanteric femoral fractures. A prospective, randomized study of one hundred patients. J Bone Joint Surg Am 80(5):618–630PubMedGoogle Scholar
  27. 27.
    Olsson O, Ceder L, Hauggaard A (2001) Femoral shortening in intertrochanteric fractures. A comparison between the Medoff sliding plate and the compression hip screw. J Bone Joint Surg Br 83(4):572–578CrossRefPubMedGoogle Scholar
  28. 28.
    Olsson O, Kummer FJ, Ceder L, Koval KJ, Larsson S, Zuckerman JD (1998) The Medoff sliding plate and a standard sliding hip screw for unstable intertrochanteric fractures: a mechanical comparison in cadaver femurs. Acta Orthop Scand 69(3):266–272CrossRefPubMedGoogle Scholar
  29. 29.
    Rosso R, Babst R, Marx A, Hess P, Heberer M, Regazzoni P (1992) Proximal femoral fractures. Is there an indication for the condylar screw (DCS)? Helv Chir Acta 58(5):679–682PubMedGoogle Scholar
  30. 30.
    Wagner R, Blattert TR, Weckbach A (1998) Solution to the problem of extra-articular, femoral hip fracture by the “sliding screw-nail principle”. Results of 2 different systems (classical nail and gamma nail). Unfallchirurg 101(12):894–900CrossRefPubMedGoogle Scholar
  31. 31.
    Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1064PubMedGoogle Scholar
  32. 32.
    Ricci WM, Gallagher B, Silva M (2007) Biomechanics of locked plates and effects of off-axis insertion. In: Annual meeting OTA, Boston, MAGoogle Scholar
  33. 33.
    Boudreau J, O’Toole R, Vesnovsky O, Topoleski T, Sciadini M (2006) Biomechanical analysis of cross-threaded locking screws in: annual meeting OTA, Ottawa, CanadaGoogle Scholar
  34. 34.
    Jiang W, Liu Y, Yang L, Xu W, Liu S, Zhang D, Chen X, Wang H (2014) Biomechanical comparative study on proximal femoral locking plate and Gamma3 for treatment of stable intertrochanteric fracture. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi Chin J Repar Reconstr Surg 28(9):1096–1099Google Scholar
  35. 35.
    Ozkan K, Turkmen I, Sahin A, Yildiz Y, Erturk S, Soylemez MS (2015) A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation: a study on synthetic bones. Indian J Orthop 49(3):347–351. doi: 10.4103/0019-5413.156220 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kregor PJ, Obremskey WT, Kreder HJ, Swiontkowski MF (2005) Unstable pertrochanteric femoral fractures. J Orthop Trauma 19(1):63–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery and RehabilitationUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Orthopedic Trauma Service, Department of Orthopaedic Surgery and RehabilitationVanderbilt Medical CenterNashvilleUSA

Personalised recommendations