Skip to main content
Log in

A comparison of four tibial-fixation systems in hamstring-graft anterior ligament reconstruction

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate at time-zero four tibial fixations on four major criteria: the elongation and cyclic stiffness of the hamstring graft construct under cyclic loading, the yield load and pullout stiffness under load at failure. Four fixation systems were tested: the Delta screw, the WasherLoc, the TightRope Reverse and the tape locking screw on 32 tibiae of adult pigs using 32 pairs of human semitendinosus and gracilis tendons. Two tests were performed: cyclic tests using loads at 70–220 N, to measure the elongation at the end of the cycles, followed by load-to-failure testing to measure the yield load and the cyclic stiffness. The mean elongation was 1.23 mm for the TLS, 3.81 mm for the Delta, 3.59 mm for the WasherLoc and 3.91 mm for the TightRope. The mean yield loads and SD were 1,015 ± 129 N for the TLS, 844 ± 394 N for the Delta, 511 ± 95 N for the WasherLoc and 567 ± 112 N for the TightRope. The results showed the significant superiority of TLS and Delta over WasherLoc and tibial TightRope in regard to yield load. The results showed the significant superiority of TLS over the other fixations in regard to slippage. The TLS system and the Delta screw provide a better quality of primary fixation to the tibia, but further in vitro studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC (2014) Femoral suspension devices for ACL reconstruction. Do adjustable loops lengthen? Am J Sports Med 42:343–349

    Article  PubMed  Google Scholar 

  2. Bartz RL, Mossoni K, Tyber J, Tokish J, Gall K, Siparsky PN (2007) A biomechanical comparison of initial strength of three different methods of anterior cruciate ligament soft tissue graft tibial fixation; Resistance to monotonic and cyclic loading. Am J Sports Med 35:949–954

    Article  PubMed  Google Scholar 

  3. Beynon BD, Amis AA (1998) In vitro testing protocols for the cruciate ligament and ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 6:S70–S76

    Article  Google Scholar 

  4. Biau DJ, Tournoux C, Katsahian S, Schranz PJ, Nizard RS (2006) Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis. BMJ 332:995–1001

    Article  PubMed Central  PubMed  Google Scholar 

  5. Brand JC Jr, Pienkowski D, Steenlage E et al (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sport Med 28:705–710

    Google Scholar 

  6. Brand J Jr, Weiler A, Caborn DNM et al (2000) Currents concepts. Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    PubMed  Google Scholar 

  7. Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human and elderly human cadaver knees: influence of insertion torque, tunnel block gap and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244

    Article  CAS  PubMed  Google Scholar 

  8. Brown CH, Skylar JH (1998) Quadrupled hamstring tendons and endobutton femoral fixation. Tech Orthop 13(3):281–298

    Article  Google Scholar 

  9. Brown CH Jr, Wilson DR, Hecker AT et al (2004) Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament graft fixation under cyclic loading. Arthroscopy 20:922–935

    Article  PubMed  Google Scholar 

  10. Caborn DN, Nyland J, Selby J, Tetik O (2003) Biomechanical testing of hamstring graft tibial tunnel fixation with bioabsorbable interference screws. Arthroscopy 19:991–996

    Article  PubMed  Google Scholar 

  11. Chang HC, Nyland J, Nawab A, Burden R, Caborn DNM (2005) Biomechanical comparison of the Bioabsorbable retroscrew system, bioscrew xtralok with stress, equalization tensioner, and 35-mm delta screws for tibialis anterior graft–tibial tunnel fixation in porcine tibiae. Am J Sports Med 33:1057–1064

    Article  PubMed  Google Scholar 

  12. Coleridge SD, Amis AA (2004) A comparison of five tibial fixation system in hamstring-graft ACL reconstruction. Knee Surg Sports Traumatol Arthosc 12:391–397

    Article  Google Scholar 

  13. Collette M, Cassard X (2011) The tape locking screw technique (TLS). A new ACL reconstruction method using a short hamstring graft. Orthop Traumatol Surg Res 97:555–559

    Article  CAS  PubMed  Google Scholar 

  14. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G, Sbihi A (2006) Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy 22:984–992

    Article  PubMed  Google Scholar 

  15. Ejerhed L, Kartus J, Kohler K, Sernert N, Brandsson S, Karlsson J (2001) Preconditioning patellar tendon autografts in arthroscopic anterior cruciate. Knee Surg Sports Traumatol Arthrosc 9(1):6–11

    Article  CAS  PubMed  Google Scholar 

  16. Elias JJ, Kilambi S, Ciccone WJ (2009) Tension level during preconditioning influences hamstring tendon graft properties. Am J Sports Med 37:334–338

    Article  PubMed  Google Scholar 

  17. Fabbriciani C, Mulas PD, Ziranu F, Deriu L, Zarelli D, Milano G (2005) Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees. Knee 12:135–138

    Article  PubMed  Google Scholar 

  18. Fu FH, Bennett CH, Lattermann C et al (1999) Current trends in anterior cruciate ligament reconstruction. Part I: biology and biomechanics of reconstruction. Am J Sports Med 27:821–830

    CAS  PubMed  Google Scholar 

  19. Giurea M, Zorilla P, Amis AA, Aichroth P (1999) Comparative pullout and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:1–5

    Article  Google Scholar 

  20. Grover DM, Howell SM, Hull ML (2005) Early tension loss in an anterior cruciate ligament graft. A cadaver study of four tibial fixation devices. J Bone Joint Surg 87A:381–390

    Article  Google Scholar 

  21. Guillard C, Lintz F, Odry GA, Colin F, Chappard D, Gouin F, Robert H (2012) Effect of pretensioning in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20:2208–2213

    Article  PubMed  Google Scholar 

  22. Hamner DL, Brown CH, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg 81A:549–557

    Google Scholar 

  23. Han DLY, Nyland J, Kendzior M, Nawab A, Caborn DNM (2012) Intratunnel versus extratunnel fixation of hamstring autograft for ACL reconstruction. Arthroscopy 28:1555–1566

    Article  PubMed  Google Scholar 

  24. Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position of fuixation of four–standed hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97–102

    Article  CAS  PubMed  Google Scholar 

  25. Howell SM, Taylor MA (1996) Brace free rehabilitation with early return to activity for knees reconstructed with a double looped semitendinosus and gracilis graft. J Bone Joint Surg 78A:814–825

    Google Scholar 

  26. Kato Y, Hoshino Y, Ingham SJM, Fu FH (2010) Anatomic double-bundle anterior cruciate ligament reconstruction. J Orthop Sci 15:269–276

    Article  PubMed  Google Scholar 

  27. Kousa P, Jarvinen TLN, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: the tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  28. Lubowitz JH, Amhad CH, Anderson K (2011) All-Inside anterior cruciate ligament graft-link technique: second generation, no-incision anterior cruciate ligament. Arthroscopy 27:717–727

    Article  PubMed  Google Scholar 

  29. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

    CAS  PubMed  Google Scholar 

  30. Micucci CJ, Frank DA, Kompel J, Muffly M, DeMeo PJ, Altman GT (2010) The effect of interference screw diameter on fixation grafts in anterior cruciate ligament reconstruction. Am J Sports Med 26:1105–1110

    Google Scholar 

  31. Morrison JB (1968) Bioengineering analysis of force actions transmitted by the knee joint. J Biomed Eng 3:164–170

    Google Scholar 

  32. Morrison JB (1969) Function of the knee joint in various activities. J Biomed Eng 4:573–580

    CAS  Google Scholar 

  33. Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29:67–71

    CAS  PubMed  Google Scholar 

  34. Noyes FR, Butler DL, Grood ES et al (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg 66A:344–352

    Google Scholar 

  35. Perlker RR, Friedlaender GE, Markham TC et al (1984) Effects of freezing and freeze drying on the mechanical properties of rat bone. J Orthop Res 1(4):405–411

    Article  Google Scholar 

  36. Petre BM, Smith SD, Jansson KS, De Meijer PP, Hackettt TR, LaPrade RF, Wijdicks CA (2012) Femoralcortical suspension devices for soft tissue ACL reconstruction. Am J Sports Med 41:416–422

    Article  PubMed  Google Scholar 

  37. Pinczewski LLA, Pinczewski LA, Clingeleffer AJ, Otto DD et al (1997) Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy 13:641–643

    Article  CAS  PubMed  Google Scholar 

  38. Robert H, Es-Sayeh J, Heymann D, Passuti N, Eloit S, Vaneenoge E (2003) Hamstring insertion site healing after anterior cruciate ligament reconstruction in patients with symptomatic hardware or repeat rupture: a histologic study in 12 patients. Arthroscopy 19(9):948–954

    Article  PubMed  Google Scholar 

  39. Rowden NJ, Sher D, Rogers GJ et al (2001) Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autograft in young fresh cadavers. Am J Sports Med 29:614–619

    Google Scholar 

  40. Shatzmann L, Brunner P, Staubli HU (1998) Effect of cyclic preconditioning on the tensile properties of human quadriceps. Knee Surg Sports Traumatol Arthrosc 6(Supp1):S56–S61

    Article  Google Scholar 

  41. Scheffler SU, Südkamp NP, Göckenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315

    Article  PubMed  Google Scholar 

  42. Scheffler SU, Unterhauser FN, Weiler A (2008) Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:834–842

    Article  CAS  PubMed  Google Scholar 

  43. Sequeira MM, Rickenbach M, Wietlisbach V, Tullen B, Schutz Y (1995) Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population survey. Am J Epidemiol 142:989–999

    CAS  PubMed  Google Scholar 

  44. Stäubli HU, Schatzmann L, Brunner P et al (1999) Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27:27–34

    PubMed  Google Scholar 

  45. Van Kampen A, Wymenga AB, van der Heide HJ, Bakens HJ (1998) The effect of different graft tensioning in anterior cruciate ligament. Arthroscopy 14(8):845–850

    Article  PubMed  Google Scholar 

  46. Weiler A, Hoffmann RFG, Siepe CJ et al (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359

    CAS  PubMed  Google Scholar 

  47. Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffman RFG (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:113–123

    Article  PubMed  Google Scholar 

  48. Weiler A, Hoffman RFG, Bail HJ, Rehm O, Sudkamp NP (2002) Tendon healing in a bone tunnel. Part II: histological analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:124–135

    Article  PubMed  Google Scholar 

  49. Woo SL-Y (1982) Mechanical properties of tendons and ligaments. I. Quasistatic and nonlinear viscoelastic properties. Biorheology 19:385–396

    CAS  PubMed  Google Scholar 

  50. Woo SLY, Orlando CA, Camp JF et al (1986) Effects of post mortem storage by freezing on ligament tensile behavior. J Biomech 19:399–404

    Article  CAS  PubMed  Google Scholar 

  51. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effect of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  52. Yamakado K, Kitaoka K, Yamada H, Hashiba K, Nakamura R, Tomita K (2002) The influence of mechanical stress on graft healing in a bone tunnel. Arthroscopy 18:82–90

    Article  PubMed  Google Scholar 

  53. Yasuda K, Tsujino J, Ohkoshi Y (1995) Graft site morbidity with autologous semitendinosus and gracilis tendons. Am J Sports Med 23:706–714

    Article  CAS  PubMed  Google Scholar 

  54. Yoshiya S, Andrish JT, Manley MT, Bauer TW (1987) Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs. Am J Sports Med 15:464–470

    Article  CAS  PubMed  Google Scholar 

  55. Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W (2006) Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction. In vitro study comparing titanium, Poly-D, L-Lactide, and Poly-D, L-Lactide–tricalcium phosphate screws. Arthroscopy 22:1204–1210

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Acknowledge to the Anatomic laboratories of Toulouse and Rennes, (France), to Anthony Fouquet, engineer from CRITT (Charleville, France).

Conflict of interest

Two authors (MC and XC) are consultants for FH Orthopedics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Robert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, H., Bowen, M., Odry, G. et al. A comparison of four tibial-fixation systems in hamstring-graft anterior ligament reconstruction. Eur J Orthop Surg Traumatol 25, 339–347 (2015). https://doi.org/10.1007/s00590-014-1473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-014-1473-5

Keywords

Navigation