PEEK rod systems for the spine

  • Andreas F. MavrogenisEmail author
  • Christos Vottis
  • George Triantafyllopoulos
  • Panayiotis J. Papagelopoulos
  • Spyros G. Pneumaticos
General Review


Traditional materials for the spine such as titanium and stainless steel have produced satisfying long-term fusion rates, mainly due to their strength and stiffness. However, although fixation with titanium rods leads to high fusion rates, increased stiffness of titanium constructs may also contribute to stress shielding and adjacent segment degeneration. Dynamic and flexible materials such as the Dynesys system allow better stress distribution to all of the spinal columns, but increase the rate of complications including screw loosening, infection, back and leg pain, and endplate vertebral fracture. Semi-rigid instrumentation systems using rods made from synthetic polymers such as the polyetheretherketone (PEEK) have been recently introduced as an alternative biomaterial for the spine. PEEK is a fully biocompatible and inert semi-crystalline thermoplastic polymer with minimal toxicity; it has a modulus of elasticity between that of cortical and cancellous bone, and significantly lower than titanium. However, there are very few clinical studies with small sample size and short-term follow-up using PEEK rod-pedicle screw spinal instrumentation systems. Additionally, their results are conflicting. To enhance the literature, this review discusses the effect of this medical for the spine and summarizes the results of the most important related series.


Polyetheretherketone PEEK rods Pedicle screws Lumbar fusion 


Conflict of interest



  1. 1.
    Ponnappan RV, Sherhan H, Zerda B, Patel R, Albert T, Vaccaro AR (2009) Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J 9:263–267PubMedCrossRefGoogle Scholar
  2. 2.
    Rutherford EE, Tarplett LJ, Davies EM, Harley JM, King LJ (2007) Lumbar spine fusion and stabilization: hardware, techniques, and imaging appearances. Radiographics 27:1737–1749PubMedCrossRefGoogle Scholar
  3. 3.
    Asher MA, Carson WL, Hardacker JW et al (2007) The effect of arthrodesis, implant stiffness, and time on the canine lumbar spine. J Spinal Disord Tech 20:549–559PubMedCrossRefGoogle Scholar
  4. 4.
    Dobbs MB, Lenke LG, Kim YJ et al (2006) Anterior/posterior spinal instrumentation versus posterior instrumentation alone for the treatment of adolescent idiopathic scoliotic curves more than 90 degrees. Spine 31:2386–2391PubMedCrossRefGoogle Scholar
  5. 5.
    Kowalski RJ, Ferrara LA, Benzel EC (2001) Biomechanics of bone fusion. Neurosurg Focus 10:E2PubMedCrossRefGoogle Scholar
  6. 6.
    Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Wedemeyer M, Parent S, Mahar A et al (2007) Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model. Spine 32:42–48PubMedCrossRefGoogle Scholar
  8. 8.
    Cavagna R, Tournier C, Aunoble S, Bouler JM, Antonietti P et al (2008) Lumbar decompression and fusion in elderly osteoporotic patients: prospective study using less rigid titanium rod fixation. J Spinal Disord Tech 21(2):86–91PubMedCrossRefGoogle Scholar
  9. 9.
    Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29(17):1938–1944CrossRefGoogle Scholar
  10. 10.
    Sears W, Sergides I, Kazemi N et al (2011) Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Spine J 11:11–20PubMedCrossRefGoogle Scholar
  11. 11.
    Hikata T, Kamata M, Furukawa M (2012) Risk factors for adjacent segment disease after posterior lumbar interbody fusion and efficacy of simultaneous decompression surgery for symptomatic adjacent segment disease. J Spinal Disord Tech [Epub ahead of print]Google Scholar
  12. 12.
    Lund T, Oxland TR (2011) Adjacent level disk disease: Is it really a fusion disease?. Orthop Clin N Am 42(4):529–541, viiiCrossRefGoogle Scholar
  13. 13.
    Adogwa O, Parker SL, Shau DN et al (2012) Cost per quality-adjusted life year gained of laminectomy and extension of instrumented fusion for adjacent-segment disease: defining the value of surgical intervention. J Neurosurg Spine 16(2):141–146PubMedCrossRefGoogle Scholar
  14. 14.
    Anandjiwala J, Seo JY, Ha KY et al (2011) Adjacent segment degeneration after instrumented posterolateral lumbar fusion: a prospective cohort study with a minimum five-year follow-up. Eur Spine J 20(11):1951–1960PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ormond DR, Albert L Jr, Das K (2012) Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series. J Spinal Disord Tech [Epub ahead of print]Google Scholar
  16. 16.
    Grob D, Benini A, Junge A et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331PubMedCrossRefGoogle Scholar
  17. 17.
    Highsmith JM, Tumialan LM, Rodts GE (2007) Flexible rods and the case for dynamic stabilization. Neurosurg Focus 22(1):E11PubMedCrossRefGoogle Scholar
  18. 18.
    Mandigo CE, Sampath P, Kaiser MG (2007) Posterior dynamic stabilization of the lumbar spine: pedicle based stabilization with the AccuFlex rod system. Neurosurg Focus 22:E9PubMedCrossRefGoogle Scholar
  19. 19.
    Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):S164–S169PubMedCentralPubMedGoogle Scholar
  20. 20.
    Welch WC, Cheng BC, Awad TE et al (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22:E8PubMedCrossRefGoogle Scholar
  21. 21.
    Sapkas GS, Themistocleous GS, Mavrogenis AF, Benetos IS, Metaxas N, Papagelopoulos PJ (2007) Stabilization of the lumbar spine using the dynamic neutralization system. Orthopedics 30(10):859–865PubMedGoogle Scholar
  22. 22.
    Sapkas GS, Mavrogenis AF, Starantzis KA, Soultanis K, Kokkalis ZT, Papagelopoulos PJ (2012) Outcome of a dynamic neutralization system for the spine. Orthopedics 35(10):e1497–e1502PubMedCrossRefGoogle Scholar
  23. 23.
    De Iure F, Bosco G, Cappuccio M, Paderni S, Amendola L (2012) Posterior lumbar fusion by peek rods in degenerative spine: preliminary report on 30 cases. Eur Spine J 21(Suppl 1):S50–S54PubMedCrossRefGoogle Scholar
  24. 24.
    Qi L, Li M, Zhang S, Xue J, Si H (2013) Comparative effectiveness of PEEK rods versus titanium alloy rods in lumbar fusion: a preliminary report. Acta Neurochir (Wien) 155(7):1187–1193CrossRefGoogle Scholar
  25. 25.
    Athanasakopoulos M, Mavrogenis AF, Triantafyllopoulos G, Koufos S, Pneumaticos SG (2013) Posterior spinal fusion using pedicle screws. Orthopedics 36(7):e951–e957PubMedCrossRefGoogle Scholar
  26. 26.
    Gornet MF, Chan FW, Coleman JC, Murrell B, Nockels RP, Taylor BA, Lanman TH, Ochoa JA (2011) Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng 133(8):081009PubMedCrossRefGoogle Scholar
  27. 27.
    Goel VK, Panjabi MM, Patwardhan AG et al (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109PubMedCrossRefGoogle Scholar
  28. 28.
    Sagamonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA (2008) The in vitro response of human osteoblasts to polyetheretherketone substrates compared to commercially pure titanium. Biomaterials 29:1563–1572CrossRefGoogle Scholar
  29. 29.
    Moon S-M, Ingalhalikar A, Highsmith JM, Vaccaro AR (2009) Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J 9(4):330–335PubMedCrossRefGoogle Scholar
  30. 30.
    Ahn YH, Chen WM, Lee K-Y, Park K-W, Lee S-J (2008) Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices. Biomed Mater 3(4):044101PubMedCrossRefGoogle Scholar
  31. 31.
    Nockels RP (2007) Early clinical experience with semi-rigid (PEEK) posterior instrumentation in lumbar fusion. Paper presented at American Association of Neurological Surgeons Annual Meeting, Washington, USAGoogle Scholar
  32. 32.
    Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22:257–265CrossRefGoogle Scholar
  33. 33.
    Turner JL, Paller DJ, Murrell CB (2010) The mechanical effect of commercially pure titanium and polyetheretherketone rods on spinal implants at the operative and adjacent levels. Spine (Phila Pa 1976) 35(21):E1076–E1082CrossRefGoogle Scholar
  34. 34.
    Bruner HJ, Guan Y, Yoganandan N et al (2010) Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation: laboratory investigation. J Neurosurg Spine 13(6):766–772PubMedCrossRefGoogle Scholar
  35. 35.
    Chamoli U, Diwan AD, Tsafnat N (2013) Pedicle screw-based posterior dynamic stabilizers for degenerative spine: in vitro biomechanical testing and clinical outcomes. J Biomed Mater Res A. doi: 10.1002/jbm.a.34986
  36. 36.
    Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26(8):2057–2066PubMedGoogle Scholar
  37. 37.
    Sarbello JF, Lipman AJ, Hong J, Lawrence J, Bessey JT, Ponnappan RK, Vaccaro AR (2010) Patient perception of outcomes following failed spinal instrumentation with polyetheretherketone rods and titanium rods. Spine (Phila Pa 1976) 35(17):E843–E848CrossRefGoogle Scholar
  38. 38.
    Sandhu HS, Tothjun Diwan AD, Seim HB et al (2000) Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine 27:567–575CrossRefGoogle Scholar
  39. 39.
    Cook SD, Patron LP, Christakis PM et al (2004) Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion. Spine 29:1118–1123PubMedCrossRefGoogle Scholar
  40. 40.
    Becker C (2003) Spine-tingling prospects: artificial disc implants are among the new technologies expected to revolutionize the outcomes of back surgery. Mod Healthc 33:30–32Google Scholar
  41. 41.
    Burkus JK (2002) Intervertebral fixation: clinical results with anterior cages. Orthop Clin N Am 33:349–357CrossRefGoogle Scholar
  42. 42.
    Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349PubMedCrossRefGoogle Scholar
  43. 43.
    Kleinstueck FS, Hu SS, Bradford DS (2002) Use of allograft femoral rings for spinal deformity in adults. Clin Orthop Relat Res 394:84–91PubMedCrossRefGoogle Scholar
  44. 44.
    Kuslich SD, Davidson G, Dowdle JD et al (2000) Four-year follow-up results of lumbar spine arthrodesis using Bagby and Kuslich lumbar fusion cage. Spine 25:2656–2663PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  • Andreas F. Mavrogenis
    • 1
    Email author
  • Christos Vottis
    • 1
  • George Triantafyllopoulos
    • 2
  • Panayiotis J. Papagelopoulos
    • 1
  • Spyros G. Pneumaticos
    • 2
  1. 1.First Department of OrthopaedicsAthens University Medical SchoolHolargos, AthensGreece
  2. 2.Third Department of OrthopaedicsAthens University Medical SchoolHolargos, AthensGreece

Personalised recommendations