Skip to main content

Advertisement

Log in

The relationship between intra-articular meniscal, chondral, and ACL lesions: finding from 1,774 knee arthroscopy patients and evaluation by gender

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Knowing the relationship between diagnoses is important in knee arthroscopy in terms of defining possible treatment modalities preoperatively. The purpose of our study was to define the diagnoses made intraoperatively through knee arthroscopy and the relationships between them. We evaluated the results of knee arthroscopies performed over a 10-year period. The sites and sizes of chondral lesions, the existence of anterior cruciate ligament (ACL) injury, and the sites of meniscal lesions were noted for a total of 1,774 patients. The relationships between these lesions were evaluated statistically. Chondral lesions and posterior medial meniscal tears were predominant in females, whereas complete ACL tears were predominant in males. ACL tears were commonly accompanied by medial and lateral meniscal bucket-handle tears. In cases with advanced chondral lesions, medial and lateral posterior meniscal and lateral anterior meniscal tears were more common. According to our results, posterior tears of the medial menisci, medial and lateral femoral condyles, lateral tibial plateau type 3 or 4 cartilage lesions, and the rate of diagnostic arthroscopy were higher in females, while middle substance and bucket-handle tears of medial menisci and total rupture of the ACL were more common in males. ACL injuries were seen to coexist with medial or lateral menisci bucket-handle tears, with no relationship between the site or size of the chondral lesions. A relationship between medial and lateral meniscal tears and the site of femoral and tibial chondral surface lesions was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parsons S, Breen A, Foster NE, Letley L, Pincus T, Vogel S, Underwood M (2007) Prevalence and comparative troublesomeness by age of musculoskeletal pain in different body locations. Fam Pract 24:308–316

    Article  CAS  PubMed  Google Scholar 

  2. Suka M, Yoshida K (2005) Musculoskeletal pain in Japan: prevalence and interference with daily activities. Mod Rheumatol 15:41–47

    Article  PubMed  Google Scholar 

  3. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I (2007) Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 23:312–315

    Article  PubMed  Google Scholar 

  4. Khanda GE, Akhtar W, Ahsan H, Ahmad N (2008) Assessment of menisci and ligamentous injuries of the knee on magnetic resonance imaging: correlation with arthroscopy. J Pak Med Assoc 58:537–540

    PubMed  Google Scholar 

  5. Sampson MJ, Jackson MP, Moran CJ, Moran R, Eustace SJ, Shine S (2008) Three tesla MRI for the diagnosis of meniscal and anterior cruciate ligament pathology: a comparison to arthroscopic findings. Clin Radiol 63:1106–1111

    Article  CAS  PubMed  Google Scholar 

  6. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23:1320–1325

    Article  PubMed  Google Scholar 

  7. Lubetzky-Vilnai A, Carmeli E, Katz-Leurer M (2009) Prevalence of injuries among young adults in sport centers: relation to the type and pattern of activity. Scand J Med Sci Sports 19(6):828–833

    Article  CAS  PubMed  Google Scholar 

  8. Muraki S, Akune T, Oka H, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Nakamura K, Kawaguchi H, Yoshimura N (2009) Association of occupational activity with radiographic knee osteoarthritis and lumbar spondylosis in elderly patients of population-based cohorts: a large-scale population-based study. Arthritis Rheum 61:779–786

    Article  PubMed  Google Scholar 

  9. Maravic M, Landais P (2006) Usefulness of a national hospital database to evaluate the burden of primary joint replacement for coxarthrosis and gonarthrosis in patients aged over 40 years. Osteoarthr Cartil 14:612–615

    Article  CAS  PubMed  Google Scholar 

  10. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil 18(1):24–33

    Article  CAS  PubMed  Google Scholar 

  11. Iwamoto J, Takeda T, Sato Y, Matsumoto H (2008) Retrospective case evaluation of gender differences in sports injuries in a Japanese sports medicine clinic. Gend Med 5:405–414

    Article  PubMed  Google Scholar 

  12. Nutton RW (2009) Is arthroscopic surgery a beneficial treatment for knee osteoarthritis? Nat Clin Pract Rheumatol 5:122–123

    Article  PubMed  Google Scholar 

  13. Bernstein J, Quach T (2003) A perspective on the study of Moseley et al.: questioning the value of arthroscopic knee surgery for osteoarthritis. Cleve Clin J Med 70:401–410

    Article  PubMed  Google Scholar 

  14. Fond J, Rodin D, Ahmad S, Nirschl RP (2002) Arthroscopic debridement for the treatment of osteoarthritis of the knee: 2- and 5-year results. Arthroscopy 18:829–834

    Article  PubMed  Google Scholar 

  15. Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH, Hollingsworth JC, Ashton CM, Wray NP (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347:81–88

    Article  PubMed  Google Scholar 

  16. Steadman JR, Briggs KK, Matheny LM, Ellis HB (2013) Ten-year survivorship after knee arthroscopy in patients with Kellgren-Lawrence grade 3 and grade 4 osteoarthritis of the knee. Arthroscopy 29(2):220–225

    Article  PubMed  Google Scholar 

  17. Spahn G, Hofmann GO, Klinger HM (2013) The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(7):1553–1561

    Article  PubMed  Google Scholar 

  18. Dervin GF, Stiell IG, Rody K, Grabowski J (2003) Effect of arthroscopic debridement for osteoarthritis of the knee on health-related quality of life. J Bone Joint Surg Am 85:10–19

    PubMed  Google Scholar 

  19. Granan LP, Bahr R, Lie SA, Engebretsen L (2009) Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med 37:955–961

    Article  PubMed  Google Scholar 

  20. Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M, Hunter DJ, Grigoryan M, Felson DT (2008) Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthr Cartil 16:897–902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cohen M, Amaro JT, Ejnisman B, Carvalho RT, Nakano KK, Peccin MS, Teixeira R, Laurino CF, Abdalla RJ (2007) Anterior cruciate ligament reconstruction after 10 to 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy 23:629–634

    Article  PubMed  Google Scholar 

  22. Vinson EN, Gage JA, Lacy JN (2008) Association of peripheral vertical meniscal tears with anterior cruciate ligament tears. Skeletal Radiol 37:645–651

    Article  PubMed  Google Scholar 

  23. De Smet AA, Graf BK (1994) Meniscal tears missed on MR imaging: relationship to meniscal tear patterns and anterior cruciate ligament tears. AJR Am J Roentgenol 162:905–911

    Article  PubMed  Google Scholar 

  24. Yoo JC, Ahn JH, Lee SH, Yoon YC (2009) Increasing incidence of medial meniscal tears in nonoperatively treated anterior cruciate ligament insufficiency patients documented by serial magnetic resonance imaging studies. Am J Sports Med 37(8):1478–1483

    Article  PubMed  Google Scholar 

  25. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18:730–734

    Article  PubMed  Google Scholar 

  26. Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14:177–182

    Article  CAS  PubMed  Google Scholar 

  27. Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK (2005) Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy 21:1366–1369

    Article  PubMed  Google Scholar 

  28. Slauterbeck JR, Kousa P, Clifton BC, Naud S, Tourville TW, Johnson RJ, Beynnon BD (2009) Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone Joint Surg Am 91:2094–2103

    Article  PubMed  Google Scholar 

  29. Oakley SP, Portek I, Szomor Z, Turnbull A, Murrell GA, Kirkham BW, Lassere MN (2003) Accuracy and reliability of arthroscopic estimates of cartilage lesion size in a plastic knee simulation model. Arthroscopy 19:282–289

    Article  PubMed  Google Scholar 

  30. Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86

    PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Akif Akcal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unay, K., Akcal, M.A., Gokcen, B. et al. The relationship between intra-articular meniscal, chondral, and ACL lesions: finding from 1,774 knee arthroscopy patients and evaluation by gender. Eur J Orthop Surg Traumatol 24, 1255–1262 (2014). https://doi.org/10.1007/s00590-013-1309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-013-1309-8

Keywords

Navigation