Treatment options for vertebral fractures an overview of different philosophies and techniques for vertebral augmentation

  • R. BornemannEmail author
  • E. M. W. Koch
  • M. Wollny
  • R. Pflugmacher
Original Article



For more than 30 years, minimally invasive surgical procedures have been available to stabilize the fractured vertebrae by cement augmentation leading to significant pain relief, a distinct improvement in quality of life and decreased mortality for patients suffering from osteoporotic vertebral compression fractures. This overview article is designed to provide information on the wide range of augmentation methods previously tested and clinically applied in surgery in an attempt to compile the clinically relevant information on safety and efficacy in the published literature.


Based on an extensive literature review on the topic of “vertebral fractures—surgical augmentation techniques” we summarized the results of published clinical trials and experimental testing which address clinically relevant questions. The selection of the publications in reference books and scientific journals covers the time period from the end of the 1970s until the present.


The final selection of more than 50 publications with, in the opinion of the authors, clinically relevant data led to the following results, which can be of significance for clinical application. The prerequisites for the success of all augmentation methods include the earliest possible surgical intervention, optimal technical equipment and an experienced, interdisciplinary team, as well as thorough consideration of the situation of the individual patient. The selection of the material for vertebral augmentation depends on the surgical method. The material of choice remains polymethylmethacrylate (PMMA), and the best record of efficacy and safety is displayed by radiofrequency kyphoplasty with ultrahigh-viscosity cement. Regarding clinical efficacy and safety, there are many convincing documentations showing superiority of vertebroplasty and kyphoplasty in comparison with conservative therapeutic regimens. Initial results of clinical studies with additional implants indicate a trend toward further improvement in clinical success and suggest possible broader clinical possibilities of application.


Modern, minimally invasive augmentation techniques represent a real alternative to conservative treatment of patients with vertebral fractures. Further technical and clinical development in this area should aim at optimizing procedural safety while continuing to achieve comparably good results to current methods. Minimizing damage to the remaining trabecular structures as well as to adjacent vertebral disks and vertebrae should be paramount of importance.


Options for the treatment of vertebral fractures: Reductions in bone density and pathological changes in bone structure are associated with an elevated risk of fractures, which can lead to decisive functional impairment, pain, and a host of further comorbidities. Vertebral augmentation can be considered as an alternative conservative treatment, in order to achieve immediate and lasting pain relief as well as improvement in functional impairment. To achieve greater safety, instrumentation for transpedicular access and incorporation of radiopacifiers in PMMA for vertebroplasty were developed in mid-eighties. Balloon kyphoplasty was introduced in the end nineties, and results of prospective, randomized clinical studies have confirmed the safety and efficacy; the destruction of the remaining native spongiosa structures during balloon expansion is viewed as a disadvantage of this method. The two step method of cavity creation followed by cement delivery known as kyphoplasty has been further refined and developed by and varied by technology/procedural developments. This includes most the radiofrequency kyphoplasty (DFINE Inc., San Jose, CA, USA), in which ultrahigh-viscosity cement is delivered at a controlled delivery rate, following producing a bone sparing size and side specific cavity which minimizes loss of spongiosa, allowing for mechanical stability upon interdigitation of cement into that remaining trabecular bone. This combination has been shown to preserve vertebral structures and reduces the risk of leakages. Finally, systems have been available in which cement augmentation of implants to enhance mechanical stability of the implants or the overall fracture is constructed by load sharing.


Vertebral compression fractures Vertebroplasty Kyphoplasty Targeted vertebral augmentation Implants 


Conflict of interest



  1. 1.
    Felsenberg D, Silman AJ, Lunt M et al (2002) For the European Prospective Osteoporosis Study (EPOS) Group. Incidence of vertebral fracture in Europe. J Bone Miner 17:716–724CrossRefGoogle Scholar
  2. 2.
    Kado DM, Browner WS, Palermo L et al (1999) Vertebral fractures and mortality in older women a prospective study. Arch Intern Med 159:1215–1220PubMedCrossRefGoogle Scholar
  3. 3.
    Denisson E, Cooper C (2002) Epidemiology of osteoporotic fractures. Horm Res 54 (Suppl)1:58–63Google Scholar
  4. 4.
    Bartel R (2008) Osteoporose—Prävention, Diagnostik, Therapie 4. Auflage, Georg Thieme Verlag, StuttgartGoogle Scholar
  5. 5.
    Klotzbuecher CM, Ross PD, Landsmann PB (2000) Patients with prior fractures have an increased risk of future fractures. J Bone Miner Res 15(4):721–739PubMedCrossRefGoogle Scholar
  6. 6.
    Habermann B, Kurth AA (2012) Die Problematik einer Fraktur unter osteoporotischen Stoffwechselbedingungen—in Orthopädische Osteologie (Andreas A Kurth und Mitarbeiter) UNI-MED Verlag AG s, pp 16–25Google Scholar
  7. 7.
    Resch H, Muschitz C (2008) Drug therapy in osteoporosis in balloon kyphoplasty. In: Becker S, Ogon M (eds) Balloon kyphoplasty. Springer, Wien, pp 49–72Google Scholar
  8. 8.
    National Institute for Health and Clinical Excellence (2006) Balloon kyphoplasty for vertebral compression fractures JPG 166: 2006 Scholar
  9. 9.
    Kaufman TJ, Jensen ME, Schweikert PA et al (2001) Age of fracture and clinical outcomes of percutaneous vertebroplasty. Am J Neuroradiol 22(10):1860–1863Google Scholar
  10. 10.
    Baraud G, Steffe T, Heini P (2004) Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 14:487–504Google Scholar
  11. 11.
    Deramond H, Depriester C, Galibert P et al (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Radiol Clin North Am 36(3):533–546PubMedCrossRefGoogle Scholar
  12. 12.
    Scoville WB, Palmer AH, Samra K, Chon G (1967) The use of acrylic plastic for vertebral replacement or fixation in metastatic disease. J Neurosurg 27:274–279PubMedCrossRefGoogle Scholar
  13. 13.
    Kustuik JP, Errico TJ, Gleason TF (1986) Techniques of internal fixation for degenarative conditions of the lumbar spine. Clin Orthop 203:219–231Google Scholar
  14. 14.
    Cibulski GR (1989) Methodes of surgical stabilization for metastatic disease of the spine. Neurosurgery 25:240–252CrossRefGoogle Scholar
  15. 15.
    Galipert P, Deramond H, Rosat P, La Gars D (1987) Preliminary note of the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33:166–168Google Scholar
  16. 16.
    Déramond H, Daasson R, Galibert P (1989) Percutaneous vertebroplasty with acrylic cement in the treatment of aggressive spinal angiomas. Rachis 177:467–472Google Scholar
  17. 17.
    Lapras C, Mottolese C, Deruty R et al (1989) Percutaneous injection of methyl-metacrylate in osteoporosis and severe vertebral osteolysis (Galibert's technic). Ann Chir 43(5):371–376PubMedGoogle Scholar
  18. 18.
    Jensen ME, Evans AJ, Mathis JM et al (1997) Percutaneous polymethylmethacrylate in vertebroplasty in the treatment of osteoporotic vertebral body compression fractures. Am J Neuroradiol 18(10):1897–1904PubMedGoogle Scholar
  19. 19.
    Cotton A, Dewatre F, Cortet B et al (1996) Percutaneous vertebroplasty for osteolytic metastases and myeloma. Radiology 2000(2):525–535Google Scholar
  20. 20.
    Watts NB, Harris ST, Genant HK (2001) Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty. Osteoporos Int 12:429–437PubMedCrossRefGoogle Scholar
  21. 21.
    Heini PF, Walchli B, Berlemann U (2000) Percutaneus transpedicular vertebroplasty with PMMA: operative technique and early results. Eur Spine J 9:445–450PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Guyot LL, Balahadra R, Fessler RD (2005) Mechanisms of pain relief following vertebroplasty and kyphoplasty. In: Resnick DR, Garfin SR (eds) Vertebroplasty and Kyphoplasty. Thieme Medical Publishers Inc. New York, Stuttgart, pp 10–13Google Scholar
  23. 23.
    Venmans A, Klazen CA, Lohle PN (2010) Percutaneous vertebroplasty and pulmonary cement embolism: results from Vertos II. Am J Neuroradiol 31:1451–1453PubMedCrossRefGoogle Scholar
  24. 24.
    Bohner M, Gasser B, Baroud G, Heini P (2003) Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials 24(16):2721–2730PubMedCrossRefGoogle Scholar
  25. 25.
    Buchbinder R, Osborne RH, Ebeling PR et al (2009) A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 361(6):557–568PubMedCrossRefGoogle Scholar
  26. 26.
    Kallmes DF, Comstock BA, Heagerty PJ et al (2009) A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 361:569–579PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Baerlocher MO, Munk PL, Liu DM et al (2010) Clinical utility of vertebroplasty. Need for better evidence. Radiology 255(3):669–674PubMedCrossRefGoogle Scholar
  28. 28.
    Brook AL, Miller TS, Nolan T et al (2009) Vertebral augmentation with a flexible curved needle. J Vasc Interv Radiol 20(4):553–555CrossRefGoogle Scholar
  29. 29.
    Becker S (2008) The technique of balloon kyphoplasty. In: Becker S, Ogon M (eds) Balloon kyphoplasty. Springer, Wien, pp 49–72CrossRefGoogle Scholar
  30. 30.
    Ledlie JT, Renfro M (2003) Balloon kyphoplasty: 1-year outcomes in vertebral body height of vertebral compression fractures. J Bone Miner Res 18:24–29CrossRefGoogle Scholar
  31. 31.
    Sandhu FA, Thompson BG, Perez-Cruet MJ et al (2005) Vertebroplasty and kyphoplasty: an overview. In: Resnick DK, Garfin SG (eds) Vertebroplasty and kyphoplasty. Thieme medical Publishers, Inc, New York, pp 1–9Google Scholar
  32. 32.
    Lieberman ICH, Dudeny S, Reinhardt MK, Bell G (2001) Initial outcome and efficacy of kyphoplasty in the treatment of painful osteoporotic vertebral compression fractures. Spine 26:1631–1638PubMedCrossRefGoogle Scholar
  33. 33.
    Wong WH, Reiley MA, Garfin SR (2000) Vertebroplasty/kyphoplasty. J Women′s Imaging 2:117–124Google Scholar
  34. 34.
    Gaitanis IN, Hadjipavlou AG, Katonis P et al (2005) Balloon kyphoplasty for treatment of pathological vertebral compressive fractures. Eur Spine J 14(3):250–260PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Garfin SR, Buckley RA, Ledlie J (2006) Balloon kyphoplasty for symptomatic vertebral body compression fractures results in rapid, significant, and sustained improvements in back pain, function, and quality of life for elderly patients. Spine 31(19):2213–2220PubMedCrossRefGoogle Scholar
  36. 36.
    Pflugmacher R, Kandziora F, Schroeder R et al (2005) Vertebroplastie und Kyphoplastie bei osteoporotischen Wirbelkörperfrakturen—Eine prospektive Analyse der Einjahresergebnisse. Fortschr Röntgenstr 177:1670–1676CrossRefGoogle Scholar
  37. 37.
    Taylor RS, Taylor RJ, Fritzell P (2006) Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: a comparative systematic review of efficacy and safety. Spine 1, 31 (23):2747–2755Google Scholar
  38. 38.
    Pflugmacher R, Bornemann R, Koch EMW et al (2012) Vergleichende Befunderhebungen der Ballon-Kyphoplastie bei Patienten mit Wirbelkörper-Frakturen infolge von Osteoporose, Metastasen und Myelomen. Z Orthop u Unfallchirurgie 150:198–204Google Scholar
  39. 39.
    Bouza C, Lopez T, Agro A et al (2006) Efficacy and safety of balloon kyphoplasty in the treatment of vertebral compression fractures. Eur Spine J 15(7):1050–1067PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wardlaw D, Cummings STR, Van Meirhaeghe J et al (2009) Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE). Lancet 373:1016–1024PubMedCrossRefGoogle Scholar
  41. 41.
    Oberkircher L, Krüger A, Bliemel C et al (2011) Zementinterdigitation und Knochenzement-Interface unterschiedlicher Wirbelkörperaugmentationsverfahren. Osteoporose Rheuma aktuell 1:12–14Google Scholar
  42. 42.
    Becker S, Dabirrhamani D, Hogg M et al (2011) Disadvantages of balloon kyphoplasty with PMMA—A clinical and biomechanical statement. J Miner Stoffwechs 18(1):9–12Google Scholar
  43. 43.
    Dalton B, Kohm A, Miller L et al (2012) Radiofrequency-targeted vertebral augmentation versus traditional balloon kyphoplasty: radiographic and morphologic outcomes of an ex vivo biomechanical pilot study. Clin Interv Aging 7:525–531PubMedCentralPubMedGoogle Scholar
  44. 44.
    Elgeti F, Marnitz T, Kröncke TJ et al (2010) Radiofrequenzkyphoplastie (RFK)—Kyphoplastie mit ultrahochviskösem Zement. Fortsch Röntgenstr 182:1–3CrossRefGoogle Scholar
  45. 45.
    Bornemann R, Hanna M, Kabir K et al (2012) Continuing conservative care versus crossover to radiofrequency kyphoplasty: a comparative effectiveness study on the treatment of vertebral body fractures. Eur Spine J 21:930–936PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Pflugmacher R, Bornemann R, Koch EM et al (2012) Comparison of clinical and radiological data in the treatment of patients with osteoporotic vertebral compression fractures using radiofrequency kyphoplasty or balloon kyphoplasty. Z Orthop Unfallchir 150:56–61Google Scholar
  47. 47.
    Mattyasovszky S, Kafchitsas K, Kurth AA Osteoporotische Wirbelkörperfrakturen—gezielte, kontrollierte Behandlung mit der Radiofrequenz (RF)-Kyphoplastie. In: Kurth AA (ed) Orthopädische Osteologie. Uni-Med Verlag Bremen1. Aufl., pp 85–89Google Scholar
  48. 48.
    Licht AW, Kramer W (2012) Radiofrequenz-Kyphoplastie (DFine) versus konventionelle Ballon-Kyphoplastie (Medtronic)—Eine prospektive Studie zur Effektivität und Sicherheit Deutscher Kongress für Orthopädie und Unfallchirurgie, BerlinGoogle Scholar
  49. 49.
    Mostertz R (2012) Behandlung einer 3.1 Fraktur des LWK 1 mit lateraler Hinterwandbeteiligung mittels Radiofrequenz-(RF-)Kyphoplastie—Osteoporose und Rheuma aktuell Sonderheft. pp 82–84Google Scholar
  50. 50.
    Drahten C (2012) Radiofrequenz-Kyphoplastie bei Pinzer-Fraktur (LWK 3) eines multimorbiden Patienten Eine Fall-Beschreibung—Osteoporose und Rheuma aktuell Sonderheft. pp 90–94Google Scholar
  51. 51.
    Prokop A, König B, Schultheiss M et al (2011) Kyphoplastie update. Wo liegen die Grenzen—was geht?, Springer, Unfallchirurg. doi: 10.1007/s00113-011-2098-3
  52. 52.
    Fürderer S, Anders M, Schwindling B et al (2002) Vertebral body stenting. A method for repositioning and augmenting vertebral compression fractures. Orthopäde 31(4):356–361PubMedCrossRefGoogle Scholar
  53. 53.
    Rotter R, Martin H, Fuerderer S et al (2010) Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty. Eur Spine J 19(6):916–923PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Korovessis P, Repantis T, Miller LE, Block JE (2011) Initial clinical experience with a novel vertebral augmentation system for treatment of symptomatic vertebral compression fractures: a case series of 26 consecutive patients. BMC Musculoskelet Disord 2:206–211CrossRefGoogle Scholar
  55. 55.
    Endres S, Badura A (2012) Shield kyphoplasty through a unipedicular approach compared to vertebroplasty and balloon kyphoplasty in osteoporotic thoracolumbar fracture: a prospective randomized study. Orthop Traumatol Surg Res 98(3):334–340PubMedCrossRefGoogle Scholar
  56. 56.
    Röllinghoff M, Zarghooni K, Zeh A et al (2012) Is there a stable vertebral height restoration with the new radiofrequency kyphoplasty? A clinical and radiological study. Eur J Orthop Surg Traumatol. doi: 10.1007/s00590-012-1026-8 PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • R. Bornemann
    • 1
    Email author
  • E. M. W. Koch
    • 1
  • M. Wollny
    • 2
  • R. Pflugmacher
    • 1
  1. 1.Klinik und Poliklinik für Orthopädie und UnfallchirurgieUniversitätsklinikum BonnBonnGermany
  2. 2.MedImbursementTarmstedtGermany

Personalised recommendations