Skip to main content
Log in

11 kGy gamma irradiated demineralized bone matrix enhances osteoclast activity

European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Demineralized bone matrix (DBM) allografts are widely used in orthopaedic clinics. However, the biological impact on its osteoinductivity after its sterilization process by gamma irradiation is not well studied. Furthermore, little is known about the relationship between residual calcium levels on osteoinductivity.

Hypothesis

We hypothesize that low-dose gamma irradiation retains the osteoinducitivity properties of DBM and causes ectopic bone formation.

Materials and methods

A randomised animal trial was performed to compare tissue and molecular responses of low-dose (11 kGy) gamma irradiated and non-irradiated human DBM at 6 weeks post-intramuscular implantation using an athymic rat model. In addition, we correlated residual calcium levels and bone formation in gamma irradiated DBM.

Results

A modified haematoxylin and eosin stain identified ectopic bony capsules at all implanted sites with no significant difference on the amount of new bone formed between the groups. Statistically significantly lower ratio of alkaline phosphatase expression over tartrate-resistant acid phosphatase and/or cathepsin K expressions was found between the groups.

Discussion

This study found that low-dose gamma irradiated DBM, which provides a sterility assurance level of 10−6 for bone allografts, retained osteoinductivity but exhibited significantly enhanced osteoclastic activity. Furthermore, this is the first study to find a positive correlation between residual calcium levels and bone formation in gamma irradiated DBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sandhu H et al (2001) Demineralized bone matrix, bone morphogenetic proteins, and animal models of spine fusion: an overview. Eur Spine J 10:S122–S131

    Article  PubMed Central  PubMed  Google Scholar 

  2. Iwata H et al (2002) Demineralised bone matrix and native bone morphogenetic protein in orthopaedic surgery. Clin Orthop Relat Res 395:99–109

    Article  PubMed  Google Scholar 

  3. Lee K, Roper J, Wang J (2005) Demineralised bone matrix and spinal arthrodesis. Spine J 5:217S–223S

    Article  PubMed  Google Scholar 

  4. Dreosos G et al (2007) Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury 38:S13–S21

    Article  Google Scholar 

  5. Kinney R et al (2010) Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma 24:S52–S55

    Article  PubMed  Google Scholar 

  6. Beswick A, Blom A (2011) Bone graft substitutes in hip revision surgery: a comprehensive overview. Injury 42:S40–S46

    Article  PubMed  Google Scholar 

  7. Anderson M, Keyak J, Skinner H (1992) Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg 74A:747–752

    Google Scholar 

  8. Wang J et al (2007) A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 16:1233–1240

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sassard W et al (2000) Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 23:1059–1064

    CAS  PubMed  Google Scholar 

  10. Han B, Tang B, Nimni M (2003) Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res 44:160–166

    Article  CAS  PubMed  Google Scholar 

  11. Sandhu H (2000) Anterior lumbar interbody fusion with osteoinductive growth factors. Clin Orthop 371:56–60

    Article  PubMed  Google Scholar 

  12. Thordarson D, Kuehn S (2003) Use of demineralized bone matrix in ankle/hindfoot fusion. Foot Ankle Int 24:557–560

    PubMed  Google Scholar 

  13. Cheung S, Westerheide K, Ziran B (2003) Efficacy of contained metaphyseal and periarticular defects treated with two different demineralized bone matrix allografts. Int Orthop 27:56–59

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Currey J et al (1997) Effects of ionizing radiation on the mechanical properties of human bone. J Orthop Res 15:111–117

    Article  CAS  PubMed  Google Scholar 

  15. Butler A et al (2005) Mechanical properties of gamma irradiated morselized bone during compaction. Biomaterials 26:6009–6013

    Article  CAS  PubMed  Google Scholar 

  16. Yu Y et al (2003) In vivo assessment of gamma-irradiated bone: osteoconductivity and osteoinductivity. In: Phillips GO (ed) Advances in tissue banking. World Scientific Publishing, London, pp 321–337

    Google Scholar 

  17. Chen J et al (2007) BMP-7 and CBFA1 in allograft bone in vivo bone formation and the influence of gamma irradiation. J Biomed Mater Res 80A:435–443

    Article  CAS  Google Scholar 

  18. Han B, Yang Z, Nimni M (2008) Effects of gamma irradiation on osteoinduction associated with demineralized bone matrix. J Orthop Res 26:75–82

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen H, Morgan D, Forwood M (2011) Validation of 11 kGy as a radiation sterilization dose for frozen bone allografts. J Arthroplast 26:303–308

    Article  Google Scholar 

  20. Zhang M, Powers R, Wolfinbarger L (1997) Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol 68:1086–1092

    Google Scholar 

  21. Turonis J et al (2006) The effect of residual calcium in decalcified freeze-dried bone allograft in a critical-sized defect in the rattus norvegicus calvarium. J Oral Implantol 32:56–74

    Article  Google Scholar 

  22. (IAEA), I.A.E.A. (2005) Code of practice for the radiation sterilization of tissue allografts: requirements for validation and routine control, Austria

  23. Nguyen H, Morgan D, Forwood M (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8:93–105

    Article  PubMed  Google Scholar 

  24. Salehpour A et al (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13:898–906

    Article  CAS  PubMed  Google Scholar 

  25. Fideler B et al (1995) Gamma irradiation effects on biomechanical properties of human bonepatellar tendon-bone allografts. Am J Sports Med 23:643–646

    Article  CAS  PubMed  Google Scholar 

  26. Gibbons M et al (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9:209–218

    Article  CAS  PubMed  Google Scholar 

  27. Minamisawa I et al (1995) Bone banking and sterilization of bones. Radiat Phys Chem 46:287–291

    Article  CAS  Google Scholar 

  28. Russel J, Block J (1999) Clinical utility of demineralized bone matrix for osseous defects, arthrodesis and reconstruction: impact of processing techniques and study methodology. Orthopedics 22:524–531

    Google Scholar 

  29. Yu Y et al (2004) In vivo assessment of gamma irradiated bone: osteoconductivity and osteoinductivity. In: Phillips G (ed) Advances in tissue banking. World Scientfic, Singapore, pp 321–337

    Chapter  Google Scholar 

  30. Puolakkainen P et al (1993) The effect of sterilization on transforming growth-factor-beta isolated from demineralized human bone transfusion. Transfusion 33:679–685

    Article  CAS  PubMed  Google Scholar 

  31. Lagercrantz C, Forshult S (1968) Trapping of free radicals formed by γ-irradiation of organic compounds. Nature 218:1247–1248

    Article  CAS  PubMed  Google Scholar 

  32. White A, Burns D, Christensen T (2006) Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol 123:504–515

    Article  CAS  PubMed  Google Scholar 

  33. Dillow A et al (1999) Bacterial inactivation by using near- and supercritical carbon dioxide. Proc Natl Acad Sci USA 96:10344–10348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sawajiri M, Mizoe J, Tanimoto K (2003) Changes in osteoclasts after irradiation with carbon ion particles. Radiat Environ Biophys 42:219–223

    Article  PubMed  Google Scholar 

  35. Klugera R et al (2003) Removal of the surface layers of human cortical bone allografts restores in vitro osteoclast function reduced by processing and frozen storage. Bone 32:291–296

    Article  Google Scholar 

  36. Akkus O, Rimnac C (2001) Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res 19:927–934

    Article  CAS  PubMed  Google Scholar 

  37. Chapman P, Villar R (1992) The bacteriology of bone allografts. J Bone Joint Surg 74:398–400

    CAS  Google Scholar 

  38. Bagi C, Miller S (1991) Ultrastructure, tartrate-resistant acid phosphatase activity and calcitonin responsiveness of osteoclasts at sites of demineralized bone matrix implant-induced osteogenesis. Clin Orthop 269:257–265

    PubMed  Google Scholar 

  39. Urist M, Strates B (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop 71:271–278

    Article  CAS  PubMed  Google Scholar 

  40. Herold R et al (2002) The effects of varying degrees of allograft decalcification on cultured porcine osteoclast cells. J Periodontol 73:213–219

    Article  PubMed  Google Scholar 

  41. Mauney J et al (2004) Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro. Tissue Eng 10:81–96

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May Y. W. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.Y.W., Yu, Y., Yang, JL. et al. 11 kGy gamma irradiated demineralized bone matrix enhances osteoclast activity. Eur J Orthop Surg Traumatol 24, 655–661 (2014). https://doi.org/10.1007/s00590-013-1238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-013-1238-6

Keywords

Navigation