Advertisement

Assessment of anterior spine fusion with the use of polyethylene cylindrical tubes in an animal model

  • Salim Ersozlu
  • Cagatay OzturkEmail author
  • Ufuk Aydinli
  • Sahin Sirmali
  • Metin Kaya
Original Article
  • 238 Downloads

Abstract

Ten dogs of the same species underwent lumbar 5–6 discectomy and adjacent partial corpectomy filled with polyethylene cylindrical tube filled with autologous bone and stabilized with plate and screws. At the end of 5 months follow-up, the dogs were sacrificed and L5-L6 vertebrae were excised en bloc and CT scans were taken. All specimens underwent routine histological examination with hematoxylin and eosin (H&E) and viewed qualitatively with light microscopy. The plain X-rays and CT scans clearly showed the fusion in all dogs. Histological examination disclosed many viable cells and normal lamella of trabecular bone formation in the bone inside and outside of both ends of the polyethylene tube. Remodeling of the bone inside the tube was apparent. Combined reconstruction using anterior polyethylene tube with anterior instrumentation after partial corpectomy and discectomy makes it possible to achieve biological fusion of the bone inside the polyethylene tube with adjacent vertebral bodies. However, further animal studies from biomechanical standpoint will be helpful for their future human usage.

Keywords

Intervertebral body fusion cage Anterior spinal fusion Polyethylene tube Histological assessment 

Evaluation de l’arthrodèse vertébrale antérieure avec utilisation de tubes cylindriques en polyéthylène dans un modèle animal

Résumé

Dix chiens de la même race ont été opérés par discectomie lombaire L-L et corporectomie adjacente comblée avec un tube cylindrique en polyéthylène rempli avec de l’os autologue et stabilisé par une plaque et des vis. Après un suivi de 5 mois les chiens ont été sacrifiés, les vertèbres L5-L6 excisées en bloc et passées au scanner. Tous les échantillons ont été examinés histologiquement avec la coloration Hématoxyline et Eosine (H & E) et analysés qualitativement au microscope. Les radiographies standard et les coupes scanographiques montraient une consolidation osseuse chez tous les chiens. L’étude histologique a mis en évidence de nombreuses cellules vivantes ainsi que de l’os trabéculaire aux deux extrémités du tube de polyéthylène. Un remodelage osseux à l’intérieur du tube était visible. Une reconstruction combinant un tube de polyéthylène avec une instrumentation antérieure après corporectomie partielle et discectomie permet une fusion biologique à l’intérieur de ce tube à partir des corps vertébraux adjacents. Cependant d’autres études animales du point de vue biomécanique seront nécessaires avant toute application humaine future.

Mots clés

Cage de fusion intervertébrale Arthrodèse vertébrale antérieure Tube en polyéthylène évaluation histologique 

References

  1. 1.
    Akamaru T, Kawahara N, Tsuchiya H et al (2002) Healing of a autologous bone in a titanium mesh cage used in anterior column reconstruction after total spondylectomy. Spine 27:E329–E333PubMedCrossRefGoogle Scholar
  2. 2.
    Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion: two-year clinical results in the first 26 patients. Spine 18:2106–2117PubMedCrossRefGoogle Scholar
  3. 3.
    Brantigan JW, Steffee AD, Lewis ML et al (2000) Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a food and drug administration investigational device exemption clinical trial. Spine 25:1437–1446PubMedCrossRefGoogle Scholar
  4. 4.
    Brodsky AE, Kovalsky ES, Khalil MA (1991) Correlation of radiographic assessment of lumbar spine fusions with surgical exploration. Spine 16(Suppl):261–265CrossRefGoogle Scholar
  5. 5.
    Chow SP, Leong JCY, Ma A et al (1980) Anterior spinal fusion for deranged lumbar intervertebral disc: a review of 97 cases. Spine 5:452–458PubMedCrossRefGoogle Scholar
  6. 6.
    Cizek GR, Boyd LM (2000) Imaging pitfalls of interbody spinal implants. Spine 25:2633–2636PubMedCrossRefGoogle Scholar
  7. 7.
    Cleveland M, Bosworth DM, Thompson FR (1948) Pseudoarthrosis in the lumbo-sacral spine. J Bone Joint Surg Am 30:302–312Google Scholar
  8. 8.
    Eck KR, Bridwell KH, Ungacta FF et al (2000) Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine 25:2407–2415PubMedCrossRefGoogle Scholar
  9. 9.
    Hollowell JP, Vollmer DG, Wilson CR (1996) Biomechanical analysis of thoracolumbar interbody constructs. Spine 21:1032–1036PubMedCrossRefGoogle Scholar
  10. 10.
    Kandziora F, Schollmeier G, Scholz M (2002) Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg 96:321–332PubMedGoogle Scholar
  11. 11.
    Kuslich SD, Ulstrom CL, Griffith SL et al (1998) The Bagby and Kuslish method of lumbar interbody fusion: history, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine 23:1267–1279PubMedCrossRefGoogle Scholar
  12. 12.
    Likibi F, Assad M, Coillard C et al (2005) Influence of biomaterial structure and hardness on its osseo-integration: histomorphometric evaluation of porous nitinol and titanium implants. Eur J Orthop Surg Traumatol 15(4):257–263CrossRefGoogle Scholar
  13. 13.
    Molinari RW, Bridwell KH, Klepps JK (1999) Minimum 5-year follow-up of anterior column structural allografts in the thoracic and lumbar spine. Spine 24:967–972PubMedCrossRefGoogle Scholar
  14. 14.
    Passuti N, Delécrin J, Daculsi G (1997) Experimental data regarding macroporous biphasic calcium phosphate ceramics. Eur J Orthop Surg Traumatol 7(2):79–84CrossRefGoogle Scholar
  15. 15.
    Ray CD (1997) Threaded titanium cages for lumbar spine. Spine 22:667–669PubMedCrossRefGoogle Scholar
  16. 16.
    Ray CD (1997) Threaded titanium cages for lumbar interbody fusions: an economic comparison with 360° fusions. Spine 22:681–685PubMedCrossRefGoogle Scholar
  17. 17.
    Togawa D, Bauer TW, Brantigan JW (2001) Bone graft incorporation in radiographically successful human intervertebral body fusion cages. Spine 26:2744–2750PubMedCrossRefGoogle Scholar
  18. 18.
    Zdeblick TA, Phillips FM (2003) Interbody cage devices. Spine 28(15 Suppl):2–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Salim Ersozlu
    • 1
  • Cagatay Ozturk
    • 2
    Email author
  • Ufuk Aydinli
    • 3
  • Sahin Sirmali
    • 4
  • Metin Kaya
    • 5
  1. 1.Faculty of Medicine, Department of OrthopedicsBaskent UniversityKonyaTurkey
  2. 2.Istanbul Spine CenterFlorence Nightingale HospitalŞişliTurkey
  3. 3.Faculty of Medicine, Department of Orthopedic SurgeryUludag UniversityBursaTurkey
  4. 4.Faculty of Medicine, Department of HistologyUludag UniversityBursaTurkey
  5. 5.Faculty of Veterinary Medicine, Department of SurgeryUludag UniversityBursaTurkey

Personalised recommendations