Trauma surgery and risk of radiation injury to patients

  • Sabur MalekEmail author
  • Eirian Davies
  • Ibrahim A. Malek
  • Arvind Rawal
  • Alok Singh
  • Robert A. Harvey
Original Article


Image intensifiers are widely used in orthopaedic trauma surgery. Since beginning of fluoroscopy use, concerns have been raised regarding the radiation risks to the patients and the theatre staff in these operations. The radiation risks are classified into two types, stochastic and deterministic risks. Effective dose (ED) and skin dose (SD) values were derived from dose area product (DAP) values and used to quantify the stochastic and deterministic risks, respectively. Patients (670) who had dynamic hip screw (DHS) fixation, cannulated hip screw (CHS) fixation, intra-medullary nailing (IMN) of femur and tibia were included in the study. ED values were 0.3, 0.6, 0.9 and 0.01 mSv and stochastic risks were 3 × 10−5, 6 × 10−5, 9 × 10−5 and 1 × 10−6 for DHS, CHS, IMN of femur and IMN of tibia, respectively. Maximum SD values were 36, 65, 100 and 46 mGy which were only 2, 3, 5 and 2% of threshold dose for temporary skin erythema (2 Gy) in DHS, CHS, IMN of femur and IMN of tibia operations. The radiation exposure in these operations was very low compared to common intervention radiology procedures. The study concludes that the risk of radiation injury in lower limb trauma surgery is extremely small. The radiation doses to patients are within maximum permissible dose (MPD) limits recommended by International Commission on Radiological Protection.


Radiation Effective dose Skin dose Fracture neck of femur Intra-medullary nailing 

Chirurgie traumatologique et risque d’irradiation des patients


Les amplificateurs de brillance sont largement utilisés en chirurgie traumatologique de l’appareil locomoteur. Depuis le début de l’utilisation de la fluoroscopie, le risque d’irradiation des patients et du personnel de bloc opératoire ont fait l’objet de la plus grande attention. Les risques d’irradiation sont classés en deux types, stochastiques et déterministes. Les valeurs des doses efficaces (ED) et cutanées (SD) ont été obtenues à partir du produit de la dose par surface (DAP) et utilisées pour évaluer quantitativement et respectivement les risques stochastiques et déterministes. 670 patients opérés par vis dynamique du fémur proximal (DHS), vis canulée du fémur proximal (CHS), enclouage centromédullaire (ECM) du fémur et du tibia ont été inclus dans l’étude. Les valeurs de ED étaient de 0.3, 0.6, 0.9 et 0.01 mSv et les risques stochastiques étaient respectivement de 3 × 10−5, 6 × 10−5, 9 × 10−5 et 1 × 10−6 pour les DHS, CHS, ECM de fémur et ACM de tibia. Les valeurs de SD maximum étaient de 36, 65, 100 et 46 mGy, ce qui correspondait à seulement 2, 3, 5 et 2% de la dose seuil de l’érythème cutané labile (2 Gy) pour les interventions de DHS, CHS, ECM du fémur et du tibia. L’irradiation dans ces opérations était très basse comparée aux protocoles habituels de radiologie conventionnelle. L’étude conclut que le risque de lésion d’irradiation dans la chirurgie des traumatismes du membre inférieur est extrêmement faible. Les doses d’irradiation délivrées aux patients sont dans la limite de la dose maximale permise (MPD) recommandée par la Commission Internationale sur la Protection Radiologique.

Mots clés

Irradiation Dose effective Dose cutanée Fracture du col du fémur Enclouage centromédullaire 


  1. 1.
    Wagner LK, Eifel PJ, Geise RA (1994) Potential biological effects following high X-ray dose interventional procedures. J Vasc Interv Radiol 5:71–84PubMedCrossRefGoogle Scholar
  2. 2.
    McParland BJ (1998a) A study of patient radiation doses in interventional radiological procedures. Br J Radiol 71:175–85Google Scholar
  3. 3.
    Steele HR, Temperton DH (1993) Patient doses received during digital subtraction angiography. Br J Radiol 66:452–6PubMedCrossRefGoogle Scholar
  4. 4.
    Marshall NW, Noble J, Faulkner K (1995) Patient and staff dosimetry in neuroradiological procedures. Br J Radiol 68:495–501PubMedGoogle Scholar
  5. 5.
    Castellano IA, McNeill JG, Thorp NC, Dance DR, Raphael MJ (1995) Assessment of organ radiation doses and associated risk for digital bifemoral arteriography. Br J Radiol 68:502–507PubMedGoogle Scholar
  6. 6.
    McParland BJ (1998b) Entrance skin dose estimates derived from dose-area product measurements in interventional radiological procedures. Br J Radiol 71:1288–1295Google Scholar
  7. 7.
    Giachino AA, Cheng M (1980) Irradiation of the surgeon during pinning of femoral fractures. J Bone Joint Surg Br 62:227–229PubMedGoogle Scholar
  8. 8.
    Giannoudis PV, McGuigan J, Shaw DL (1998) Ionising radiation during internal fixation of extracapsular neck of femur fractures. Injury 29:469–472PubMedCrossRefGoogle Scholar
  9. 9.
    Madan S, Blakeway C (2002) Radiation exposure to surgeon and patient in intramedullary nailing of the lower limb. Injury 33:723–727PubMedCrossRefGoogle Scholar
  10. 10.
    International Commission on Radiological Protection (1990) Recommendations of the International Commission on Radiological Protection, Publication 60. Pergammon, Oxford. Ann ICRP 21:1–3Google Scholar
  11. 11.
    Doll R (1993) Epidemiological evidence of effects of small doses of ionizing radiation with a note on the causation of clusters of childhood leukaemia. Radiat Protect 13:233–41CrossRefGoogle Scholar
  12. 12.
    Vano E, Gonzalez L, Ten JI, Fernandez JM, Guibelalde E, Macaya C (2001) Skin dose and dose-area product values for interventional cardiology procedures. Br J Radiol 74:48–55PubMedGoogle Scholar
  13. 13.
    van de Putte S, Verhaegen F, Taeymans Y, Thierens H (2000) Correlation of patient skin doses in cardiac interventional radiology with dose-area product. Br J Radiol 73:504–513PubMedGoogle Scholar
  14. 14.
    Fletcher DW, Miller DL, Balter S, Taylor MA (2002) Comparison of four techniques to estimate radiation dose to skin during angiographic and interventional radiology procedures. J Vasc Interv Radiol 13:391–397PubMedGoogle Scholar
  15. 15.
    LeHeron JC (1992) Estimation of effective dose to the patient during medical X-ray examinations from measurements of dose area product. Phys Med Biol 37:2117–2126CrossRefGoogle Scholar
  16. 16.
    European Commission (1997) Council Directive 97/43/EURATOM of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure and repealing Directive 84/466 Euratom. Official J Eur Commun L 180:22–27Google Scholar
  17. 17.
    BOE 1999 (1999) Royal Decree 1976/1999, from the Health and Consumer Affairs Department, establishing quality criteria in radiodiagnostics. In: State Official Bulletin of December 29 1999:45891–45900 (In Spanish)Google Scholar
  18. 18.
    Recommendations on the limits for exposure to ionising radiation (1987) NCRP Report no. 91. Bethesda, Md: National Council on Radiation Protection and MeasurementsGoogle Scholar
  19. 19.
    Huda W, Peters KR (1994) Radiation-induced temporary epilation after a neuroradiologically guided embolization procedure. Radiology 193:642–4PubMedGoogle Scholar
  20. 20.
    Shope TB (1996) Radiation-induced skin injuries from fluoroscopy. Radiographics 16:1195–1199PubMedGoogle Scholar
  21. 21.
    Vano E, Arranz L, Sastre JM, Moro C, Ledo A, Garate MT, Minguez I (1998) Dosimetric and radiation protection considerations based on some cases of patient skin injuries in interventional cardiology. Br J Radiol 71:510–516PubMedGoogle Scholar
  22. 22.
    Wagner LK, McNeese MD, Marx MV, Siegel EL (1999) Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology 213:773–776PubMedGoogle Scholar
  23. 23.
    Ionising Radiations (Medical Exposure) Regulations (IRMER) 2000. Statutory Instrument 2000 No: 1059, Stationary Office, UK. ISBN 0110991311Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sabur Malek
    • 1
    • 4
    Email author
  • Eirian Davies
    • 2
  • Ibrahim A. Malek
    • 3
  • Arvind Rawal
    • 2
  • Alok Singh
    • 2
  • Robert A. Harvey
    • 2
  1. 1.University of Hull and Hull Royal InfirmaryHullUK
  2. 2.Wirral Hospital NHS TrustArrowe Park HospitalWirralUK
  3. 3.Royal Liverpool Children’s NHS TrustLiverpoolUK
  4. 4.CardiffUK

Personalised recommendations