Radiation exposure to patients in lower limb trauma surgery

  • Sabur MalekEmail author
  • Eirian Davies
  • Ibrahim A. Malek
  • Arvind Rawal
  • Alok Singh
  • Robert A. Harvey
Original Article


Fluoroscopy equipments have enabled us to perform operations that otherwise would be impossible but only at the expense of exposing the patients and theatre staff to radiation. The aim of this study was to determine the average radiation exposure to the patients in dynamic hip screw (DHS) fixation, cannulated hip screw (CHS) fixation, intra-medullary nailing (IMN) of femur and tibia operations. The records of all patients undergoing the above operations between May 2000 and August 2003 were retrospectively reviewed. A total of 670 patients were included. 389 had DHS, 85 had CHS, 125 had IMN of femur and 71 had IMN of tibia operations. The average radiation time was 0.7, 1.1, 2.5 and 2.1 min and the average radiation dose (in dose area product-DAP) was 196, 356, 548 and 125 cGy cm2 for DHS, CHS, IMN of femur and IMN of tibia, respectively. Compared to the registrars, radiation time and dose were higher with the consultants in DHS fixation (P = 0.02, 0.02). The radiation dose was higher with the senior house officers compared to the registrars in CHS fixation (P = 0.03). There were no significant differences between the consultants and the registrars in IM nailing operations. The study concludes that radiation exposure to the patients in DHS and CHS operations depends on the experience of the surgeon but not in IMN operations. The IMN of femur involved more than four times higher radiation than IMN of tibia and the CHS fixation involved double the radiation than the DHS fixation. The radiation time was poor comparative metric to estimate radiation dose.


Radiation exposure Dynamic hip screw Cannulated hip screw Intra-medullary nailing Fracture femur 

Exposition aux irradiations des opérés pour traumatisme des membres inférieurs


Les appareils de fluoroscopie nous ont permis d’exécuter des opérations qui seraient autrement impossibles, avec l’inconvénient d’exposer les patients et le personnel du bloc opératoire aux irradiations. Le but de cette étude était de déterminer l’irradiation moyenne des patients au cours d’ostéosynthèses par vis dynamique du fémur proximal (DHS), vis cannulée du fémur proximal (CHS), enclouage centromédullaire (ECM) du tibia et du fémur. Les dossiers de tous les patients ayant subit les susdites opérations entre mai 2000 et août 2003 ont été rétrospectivement passés en revue. Un total de 670 patients a été inclus. 389 avait eu une DHS, 85 une CHS, 125 un ECM de fémur et 71 un ECM du tibia. La durée moyenne d’irradiation était de 0.7, 1.1, 2.5 et 2.1 minutes et la dose moyenne de radiations était de 196, 356, 548 et 125 cGy cm2 respectivement pour les DHS, CHS, ECM de fémur et ECM de tibia. Comparé aux chefs de clinique, le temps d’irradiation et la dose étaient plus importants avec les chirurgiens confirmés dans l’ostéosynthèse par DHS (p = 0.02, 0.02). La dose de radiations était plus importante avec les internes qu’avec les chefs de clinique dans le vissage par CHS (p = 0.03). Il n’y avait aucune différence significative entre les chirurgiens confirmés et les chefs de clinique dans l’ECM. L’étude conclut que l’irradiation des patients dans les DHS et les CHS dépend de l’expérience du chirurgien, mais pas dans les ECM. L’ ECM du fémur a provoqué une irradiation plus de quatre fois plus importante que celle de l’ECM du tibia et le vissage par CHS provoque une irradiation deux fois plus importante que celle du vissage par DHS. La durée d’irradiation était un moyen peu efficace pour évaluer la dose d’irradiation.

Mots clés

Exposition aux radiations Vis dynamique de fémur proximal Vis cannulée de fémur proximal Enclouage centromédullaire Fracture du fémur 


  1. 1.
    International Commission on Radiological Protection (1990) Recommendations of the international commission on radiological protection, Publication 60. Oxford, Pergammon Press. Ann ICRP 21:1–3Google Scholar
  2. 2.
    Giachino AA, Cheng M (1980) Irradiation of the surgeon during pinning of femoral fractures. J Bone Joint Surg Br 62:227–229PubMedGoogle Scholar
  3. 3.
    Ward AJ, Reed MW, Cooke PH, Pitcher EM (1985) Radiation exposure during dynamic hip screw operation. Injury 16:585–586PubMedCrossRefGoogle Scholar
  4. 4.
    Sanders R, Koval KJ, DiPasquale T, Schmelling G, Stenzler S, Ross E (1993) Exposure of the orthopaedic surgeon to radiation. J Bone Joint Surg Am 75:326–330PubMedGoogle Scholar
  5. 5.
    Miller ME, Davis ML, MacClean CR, Davis JG, Smith BL, Humphries JR (1983) Radiation exposure and associated risks to operating-room personnel during use of fluoroscopic guidance for selected orthopaedic surgical procedures. J Bone Joint Surg Am 65:1–4PubMedGoogle Scholar
  6. 6.
    Levin PE, Schoen RW Jr, Browner BD (1987) Radiation exposure to the surgeon during closed interlocking intramedullary nailing. J Bone Joint Surg Am 69:761–766PubMedGoogle Scholar
  7. 7.
    Sugarman ID, Adam I, Bunker TD (1988) Radiation dosage during AO locking femoral nailing. Injury 19:336–338PubMedCrossRefGoogle Scholar
  8. 8.
    Muller LP, Suffner J, Wenda K, Mohr W, Rommens PM (1998) Radiation exposure to the hands and the thyroid of the surgeon during intramedullary nailing. Injury 29:461–468PubMedCrossRefGoogle Scholar
  9. 9.
    Madan S, Blakeway C (2002) Radiation exposure to surgeon and patient in intramedullary nailing of the lower limb. Injury 33:723–727PubMedCrossRefGoogle Scholar
  10. 10.
    Giannoudis PV, McGuigan J, Shaw DL (1998) Ionising radiation during internal fixation of extracapsular neck of femur fractures. Injury 29:469–472PubMedCrossRefGoogle Scholar
  11. 11.
    European Commission (1997) Council Directive 97/43/EURATOM of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure and repealing Directive 84/466 Euratom. Official Journal of the European Communities L 180:22–27Google Scholar
  12. 12.
    BOE 1999 (1999) Royal Decree 1976/1999, from the Health and Consumer Affairs Department, establishing quality criteria in radiodiagnostics. In: State Official Bulletin of December 29 1999:45891–45900 (In Spanish)Google Scholar
  13. 13.
    Fletcher DW, Miller DL, Balter S, Taylor MA (2002) Comparison of four techniques to estimate radiation dose to skin during angiographic and interventional radiology procedures. J Vasc Interv Radiol 13:391–397PubMedGoogle Scholar
  14. 14.
    Ionising Radiations (Medical Exposure) Regulation (IRMER) 2000. Statutory Instrument 2000 No:1059, Stationary Office, UK. ISBN 0110991311Google Scholar
  15. 15.
    Trout ED, Kelley JP (1972) Scattered radiation from a tissue-equivalent phantom for x rays from 50 to 300 kVp. Radiology 104:161–169PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sabur Malek
    • 1
    • 4
    Email author
  • Eirian Davies
    • 2
  • Ibrahim A. Malek
    • 3
  • Arvind Rawal
    • 2
  • Alok Singh
    • 2
  • Robert A. Harvey
    • 2
  1. 1.University of Hull and Hull Royal InfirmaryHullUK
  2. 2.Wirral Hospital NHS Trust, Arrowe Park HospitalWirralUK
  3. 3.Royal Liverpool Children’s NHS TrustLiverpoolUK
  4. 4.CardiffUK

Personalised recommendations