Advertisement

Cranial acetabular osteophytes limits the maximal amplitude of hip abduction

  • A. Amaro
  • F. Amado
  • R. Vitorino
  • H. J. AppellEmail author
  • J. A. Duarte
Original Article

Abstract

The aim of this study was to establish a relationship between the existence of cranial acetabular osteophytes (CAO) in hip joints showing varying degrees of degenerative alterations and the range of maximal hip abduction. Seventy-six hip joints from 38 patients (42–82 years old) expecting hip joint replacement because of primary osteoarthritis (OA) were examined; out of those, 50 hip joints showed different levels of OA according to the American College of Rheumatology criteria. The radiological evaluation included the measurement of the length of the CAO and the amplitude of “free angle” (FA, centered in the femoral head), remaining between the lateral extremity of the CAO and the point where the femoral neck would hit the CAO during abduction. The range of passive motion (ROPM) for abduction was assessed using a goniometer. The correlation between abduction and radiological alterations was calculated with the Pearson coefficient. ROPM in abduction was negatively correlated with the length of CAO (r = −0.50; P < 0.01) and positively correlated with the FA (r = 0.60; P < 0.01). The data suggest that the length of CAO plays a key role to limit the ROPM during abduction and that the length of CAO and FA may be useful measures to predict hip function during abduction.

Keywords

Osteoarthritis Hip joint Hip movements Range of motion 

Les ostéophytes acétabulaires crâniens limitent l’amplitude maximale de l’abduction de l’hanche

Résumé

L’objectif de cette étude a été d’établir le rapport entre l’existence des ostéophytes acétabulaires crâniens (OAC) dans les articulations de la hanche avec différents degrés de dégénération articulaire et l’amplitude de l’abduction de l’articulation. Nous avons examiné soixante-seize hanches chez 38 patients (d’âge compris entre 42–82) qui attendaient une chirurgie de substitution articulaire pour ostéoarthrose (OA) primaire; 50 hanches présentaient des différents degrés de OA basés sur les critères du Collège Américain de Rhumatologie. Les évaluations radiographiques, incluaient la mesure de l’extension de l’OAC et l’amplitude de “l’angle libre” (AL, dont la verticale se trouve située dans le centre de la tête du fémur), compris entre l’extrémité latérale de l’OAC et le point où le col du fémur se trouve théoriquement en contact avec le OAC pendant l’abduction. L’amplitude articulaire passive (AAP) dans l’abduction a été mesurée avec un goniomètre. La co-rélation entre l’abduction et les paramètres radiographiques a été calculée avec le coefficient de Pearson. AAP dans l’abduction a été négativement en corrélation avec l’extension de l’OAC (r = −0.50; P < 0.01) et positivement en corrélation avec l’AL (r = 0.60; P < 0.01). Les résultats suggèrent que le OAC a un rôle important dans la limitation de l’amplitude articulaire maximale pendant l’abduction. De cette étude, nous pouvons conclure que l’extension de OAC et l’amplitude de AAP peuvent être des bons indicateurs des limites articulaires, pendant l’abduction.

Mots clés

Ostéoarthrose Hanche Mouvements articulaires de la hanche Amplitude articulaire 

Notes

Acknowledgments

This study was supported by a grant for health research (“Projectos I&DT em Ciências e Tecnologias da Saúde – 2002”) conceded by the University of Aveiro.

References

  1. 1.
    Aigner T, Dietz U, Stob H, von der Mark K (1995) Differential expression of collagen types I, II, III, and X in human osteophytes. Lab Invest 73:236–243PubMedGoogle Scholar
  2. 2.
    Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M, Howell D, Kaplan D, Koopman W, Longley S III, Mankin H, McShane DJ, Medsger T Jr, Meenan R, Mikkelsen W, Moskowitz R, Murphy W, Rothschild B, Sega M, Sokoloff L, Wolfe F (1986) Development of criteria for the classification and reporting of osteoarthritis. Arthritis Rheum 29:1039–1049PubMedGoogle Scholar
  3. 3.
    Altman R, Alarcon G, Appelrouth D, Bloch D, Borenstein D, Brandt K, Brown C, Cooke TD, Daniel W, Feldman D (1991) The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 34:505–514PubMedGoogle Scholar
  4. 4.
    Arokoski MH, Haara M, Helminen HJ, Arokoski JP (2004) Physical function in men with and without hip osteoarthritis. Arch Phys Med Rehabil 85:574–581CrossRefPubMedGoogle Scholar
  5. 5.
    Birrell F, Croft P, Cooper C, Hosie G, Macfarlane G, Silman A, the PCR Hip Study Group (2001) Predicting radiographic hip osteoarthritis from range of movement. Rheumatology 40:506–512CrossRefPubMedGoogle Scholar
  6. 6.
    Cyriax JH (1982) Textbook of orthopaedic medicine. I: Diagnosis of soft tissue lesions, 8th edn. Balliere Tindall, LondonGoogle Scholar
  7. 7.
    Felson DT, Zhang Y (1998) An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 41:1343–1355CrossRefPubMedGoogle Scholar
  8. 8.
    Felson DT (2000) Osteoarthritis: new insights, part 1: The disease and its risk factors. Ann Intern Med 133:635–646PubMedGoogle Scholar
  9. 9.
    Gelse K, Söder S, Eger W, Diemtar T, Aigner T (2003) Osteophyte development-molecular characterization of differentiation stages. Osteoarthritis Cartilage 11:141–148CrossRefPubMedGoogle Scholar
  10. 10.
    Kapandji AI (1996) Physiologie Articulaire. 5e éd., vol II, Maloine, ParisGoogle Scholar
  11. 11.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthrosis. Ann Rheum Dis 16:494–502PubMedCrossRefGoogle Scholar
  12. 12.
    Klippel JH, Dieppe PA (1997) Rheumatology, 2nd edn. Mosby, LondonGoogle Scholar
  13. 13.
    Lequesne MG, Mery C, Samson M, Gerard P (1987) Indexes of severity for osteoarthritis of the hip and knee. Validation-value in comparison with other assessment tests. Scand J Rheumatol Suppl 65:85–89PubMedGoogle Scholar
  14. 14.
    Matyas JR, Sandell LJ, Adams ME (1997) Gene expression of type II collagens in chondro-osteophytes in experimental osteoarthritis. Osteoarthritis Cartilage 5:99–105CrossRefPubMedGoogle Scholar
  15. 15.
    Newman P, Hulth A, Lindén B, Johnell O, Dahlberg L (2003) The role of osteophytic growth in hip osteoarthritis. Int Orthop 27:262–266CrossRefPubMedGoogle Scholar
  16. 16.
    Pottenger LA, Phillips FM, Draganich LF (1990) The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum 33:853–858PubMedGoogle Scholar
  17. 17.
    Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. Cell biology of osteoarthritis. Arthritis Res 3:107–113CrossRefPubMedGoogle Scholar
  18. 18.
    Uchino M, Izumi T, Tominaga T, Wakita R, Minehara H, Sekiguchi M, Itoman M (2000) Growth factor expression in the osteophytes of the human femoral head in osteoarthritis. Clin Orthop Relat Res 377:119–125CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Amaro
    • 1
  • F. Amado
    • 2
  • R. Vitorino
    • 2
  • H. J. Appell
    • 3
    • 5
    Email author
  • J. A. Duarte
    • 1
    • 4
    • 5
  1. 1.Health SchoolUniversity of AveiroAveiroPortugal
  2. 2.Chemistry DepartmentUniversity of AveiroAveiroPortugal
  3. 3.Department of Physiology and AnatomyGerman Sport University, DSHS CologneCologneGermany
  4. 4.CIAFEL, FCDEFUniversity of PortoPortoPortugal
  5. 5.Muscle Atrophy Research Group (MARG)PortoPortugal

Personalised recommendations