Advertisement

Fracture ostéochondrale du condyle femoral latéral par luxation de la rotule

  • S. KoëterEmail author
  • C. J. M. van Loon
  • J. L. C. van Susante
Case Report

Résumé

Une luxation externe de la rotule est parfois compliquée par une fracture ostéochondrale. Ces fractures sont habituellement localisées dans la partie inféro-médiale de la rotule. Dans notre cas clinique, nous décrivons une fracture ostéochondrale du condyle fémoral externe après luxation complète de la rotule. Cette dernière constitue un traumatisme plus sévère car implique une importante composante de charge au niveau de l’articulation du genou. La refixation de la fracture ostéochondrale devrait être réalisée. Différentes techniques chirurgicales utilisant des matériaux nonrésorbables ont été décrites. Nous décrivons les avantages et les inconvénients d’une technique utilisant une cheville biodégradable.

Mots clés

Ostéosynthèse Fracture Traumatismes du genou Rotule Patella Chirurgie Luxation 

Lateral femoral condyle osteochondral fracture caused by a patella luxation: advantages and disadvantages of PLA fixation

Abstract

A lateral patella luxation is occasionally complicated by an (osteo)chondral fracture. These fractures are usually located at the inferomedial part of the patella. In this case report we describe an osteochondral fracture of the lateral femoral condyle after a dislocation of the patella. The latter is a more severe injury because it involves an important weight bearing part of the knee joint. Refixation of the osteochondral fracture should be pursued. Various surgical techniques using nonresorbable materials have been described. We describe the advantages and disadvantages of refixation with biodegradable pin fixation for an osteochondral fracture caused by a patellaluxation.

Keywords

Osteosynthesis Fracture Knee injuries Patella Surgery Luxation 

References

  1. 1.
    Amecke B, Bendix D, Entenmann G (1992) Resorbable polyesters: composition, properties, applications. In: Clinical materials. Elsevier Science Publisher, EnglandGoogle Scholar
  2. 2.
    Börstman O (1991) Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J Bone Joint Surg 73-Br:679–682Google Scholar
  3. 3.
    Börstman O, Vainionpää S, Hirvensalo E, Mäkelä A, Vithonen K, Törmälä P, Rokkanen P (1987) Biodegradable internal fixation for malleolar fractures. J Bone Joint Surg 69-Br:615–619Google Scholar
  4. 4.
    Caplan A, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM (1997) Principles of cartilage repair and regeneration. Clin Orthop 342:254–269CrossRefPubMedGoogle Scholar
  5. 5.
    Hammerle CP, Jacobs RP (1980) Chondral and osteochondral fractures after luxation of the patella and their treatment. Arch Orthop Traumat Surg 97:220–211CrossRefGoogle Scholar
  6. 6.
    Hayes CW, Sawyer RW, Conway WF (1990) Patellar cartilage lesions: in vitro detection and staging with MR imaging and pathologic correlation. Radiology 176:479–483PubMedGoogle Scholar
  7. 7.
    Majola A, Vainionpää S, Vithonen K, Mero M, Vasenius J, Törmälä P, Rokkanen (1991) Absortption, biocompatibility and fixation properties of polyactid acid in bone tissue: an experimental study in rats. Clin Orthop 268:260–269PubMedGoogle Scholar
  8. 8.
    Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg 64-A:460–466Google Scholar
  9. 9.
    Newman AP (1998) Articulate cartilage repair. Am J Sports Med 26: 309–324PubMedGoogle Scholar
  10. 10.
    O’Driscoll SW, Keeley FW, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts for biological resurfacing of major full thickness defects in joint surfaces under the influence of continuous passive motion: a follow-up report at one year. J Bone Joint Surg 70-A:595–606Google Scholar
  11. 11.
    Prakash D, Learmont D (2002) Natural progression of osteo-chondral defect in the femoral condyle. Knee 9:7–10CrossRefPubMedGoogle Scholar
  12. 12.
    Rorabeck CH, Bobechko WP (1976) Acute dislocation of the patella with osteochondral fracture. J Bone Joint Surg 58-B:237–240Google Scholar
  13. 13.
    Salter RB, Clements ND, Ogilvie-Harris D (1982) The healing of articular tissues through continuous passive motion: the essence of the first ten years of experimental investigations. J Bone Joint Surg 64-B:640Google Scholar
  14. 14.
    Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg 75-A:532–553Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Koëter
    • 1
    • 2
    Email author
  • C. J. M. van Loon
    • 1
  • J. L. C. van Susante
    • 1
  1. 1.Department of Orthopaedic SurgeryRijnstate Hospital ArnhemArnhemThe Netherlands
  2. 2.Department of Orthopaedic SurgerySt. MaartenskliniekNijmegenThe Netherlands

Personalised recommendations