Advertisement

Lumbar spine and proximal femur bone mineral density after contralateral total hip replacement

  • Alexandre NehmeEmail author
  • Michel Laroche
  • Jean-Louis Tricoire
  • Ghassan Maalouf
  • Philippe Chiron
  • Jean Puget
Original Articla
  • 88 Downloads

Abstract

Controversy persists regarding the eventual bone mineral density (BMD) variations in the contralateral hip and lumbar spine after unilateral primary total hip arthroplasty. Bone loss may occur if the operation requires a period of bed rest. The purpose of this study was to characterize BMD changes at these two sites after unilateral total hip replacement (THR). In this study, 52 male patients who underwent total hip arthroplasty with a cemented modular straight stem were included. BMD was assessed at the lumbar spine and the contralateral, nonoperated hip using the dual energy X-ray absorptiometry (DEXA) method. Measurements were done 1 month before the operation and at days 8, 90, 180, 365, and 710 postoperatively. No statistically significant BMD changes were present between the different measurements either in L2–L4 vertebrae or at any of the seven Grüen zones of the contralateral, nonoperated hip. Our results suggest that immediate full weightbearing permitted by cemented implants avoids bone loss from the proximal nonoperated femur and the lumbar spine and hence may prevent transformation of osteopenia to osteoporosis in older patients.

Keywords

Contralateral hip Arthroplasty Bone mineral density (BMD) Lumbar spine 

Résumé

La densité minérale osseuse du rachis lombaire et de la hanche controlatérale ne varie pas après prothèse totale de hanche cimentée. La mise en place de la tige fémorale d'une prothèse totale de hanche induit un pontage des contraintes dans le fémur proximal responsable d'une résorption osseuse bien documentée dans la littérature. La revue de la littérature concernant le comportement du fémur controlatéral et du rachis lombaire retrouve des études contradictoires. Le but de ce travail est l'étude du comportement osseux du fémur controlatéral et du rachis lombaire après prothèse totale de hanche unilatérale cimentée avec un appui post-opératoire immédiat. La série étudiée comporte 52 patients opérés d'une PTH unilatérale cimentée pour coxarthrose. Tous ont été suivis par des radiographies conventionnelles et des examens de type DPX de la hanche controlatérale et du rachis lombaire. Ces examens ont été réalisés un mois avant l'intervention puis à J8, J90, J180, J365, et J710. L'analyse a été effectuée à partir des mesures de la DMO corticale du col fémoral et trabéculaire au niveau des vertèbres L2-L4. La verticalisation de ces patients avec reprise de la marche avec appui immédiat a commencé en moyenne à J3-J4 post-opératoire. Résultats : la DPX n'a pas objectivé de diminution significative de la DMO chez aucun des patients inclus dans l'étude, ni au niveau du rachis lombaire, ni au niveau du col fémoral controlatéral. L'utilisation des tiges fémorales cimentées ou non cimentées, mais avec un dessin et un traitement de surface permettant un appui post-opératoire immédiat est à favoriser chez les patients âgés afin de diminuer le risque de perte osseuse accrue chez ces patients souvent déjà ostéoporotiques.

Mots clés

Hanche controlatérale Arthroplastie Densité minérale osseuse Rachis lombaire 

References

  1. 1.
    Adolphson P, Sivers KV, Dalen N, Jonsson U, Dahlborn M (1993) Bone and muscle mass after hip arthroplasty. A quantitative computed tomography study in 20 arthrosis cases. Acta orthop Scand 64 (2):181–184PubMedGoogle Scholar
  2. 2.
    Adolphson P, Sivers KV, Dalen N, Jonsson U, Dahlborn M (1994) Decrease in vertebral bone density after hip arthroplasty; a quantitative computed tomography study in 18 arthrosis cases. Acta Orthop Scand 65 (1):12–14PubMedGoogle Scholar
  3. 3.
    Berry DJ, Harmsen S, Ilstrup D (1995) Survivorship of uncemented proximally porous-coated femoral components. Clin Orthop 319:168–177PubMedGoogle Scholar
  4. 4.
    Black DM, Daniels MD, Dunn HK, Kruger RA (1985) Computerized tomographic determination of vertebral density after total hip arthroplasty. Clin Orthop 198:259–263PubMedGoogle Scholar
  5. 5.
    Charnley J (1979) Low friction arthroplasty of the hip: Theory and practice. Springer, Berlin Heidelberg New York pp 11–28Google Scholar
  6. 6.
    Cohen B, Rushton N (1995) Bone remodeling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg [Br] 77(5):815–819Google Scholar
  7. 7.
    Doladson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19(12):1071–1084PubMedGoogle Scholar
  8. 8.
    Franck H, Munz M, Scherrer M (1997) Bone mineral density of opposing hips using dual energy X-ray absorptiometry in single beam and fan-beam design. Calcif Tissue Int 61:445–447CrossRefPubMedGoogle Scholar
  9. 9.
    Grüen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components. Clin Orthop 141:17–27PubMedGoogle Scholar
  10. 10.
    Howard GM, Nguyen TV, Pocock NA, Kelly PJ, Eisman JA (1997) Implications for assessment of osteoporosis and study design. Osteoporosis Int 7:190–194Google Scholar
  11. 11.
    Krolner B, Toft B (1983) An unheeded side effect of therapeutic bed rest. Clin Sci 64 (5):537–540PubMedGoogle Scholar
  12. 12.
    Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5 (8):843–850PubMedGoogle Scholar
  13. 13.
    Leppala J, Kannus P, Natri A, Panasen M, Sievanen H, Vuori I, Jarvinen M (1999) Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-up study. Calcif Tissue Int 64(4):357–363CrossRefPubMedGoogle Scholar
  14. 14.
    Martini F, Kremling E, Schmidt B, Sell S, Mayer F (1999) Bone mineral density of the proximal femur after unilateral cementless total hip replacement. Int Orthop 23:104–106CrossRefPubMedGoogle Scholar
  15. 15.
    Martini F, Schmidt B, Kremling E, Sell S (1996) Cementless total hip replacement does not change bone mineral density of the lumbar spine; Dexa measurements in 50 patients. Acta Orthop Scand 67(4):352–354PubMedGoogle Scholar
  16. 16.
    Merle D'Aubigne R, Postel M (1954) Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg [Am] 36451–475Google Scholar
  17. 17.
    Niinimäki T, Jalovaara P (1995) Bone loss from the proximal femur after arthroplasty with an isoelastic stem; BMD measurements in 25 patients after 9 years. Acta Orthop Scand 66 (4):347–351Google Scholar
  18. 18.
    Oh I, Harris WH (1978) Proximal strain distribution in the loaded femur; an in vitro comparison of the distribution in the intact femur after insertion of different hip-replacement femoral components. J Bone Joint Surg [Am] 60(1):75–85Google Scholar
  19. 19.
    Pritchett JW (1995) Femoral bone loss following hip replacement. Clin Orthop 314:156–161PubMedGoogle Scholar
  20. 20.
    Sabo D, Reiter A, Simank HG, Thomsen M, Lukoschek M, Ewerback V (1998) Longitudinal study and cross-sectional study on Titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62:177–182CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Alexandre Nehme
    • 1
    Email author
  • Michel Laroche
    • 2
  • Jean-Louis Tricoire
    • 1
  • Ghassan Maalouf
    • 3
  • Philippe Chiron
    • 1
  • Jean Puget
    • 1
  1. 1.Department of Orthopedics and TraumatologyRangueil University HospitalToulouse, Cedex 4France
  2. 2.Department of RheumatologyRangueil University HospitalCedexFrance
  3. 3.Department of orthopedics and traumatologySaint Georges HospitalBeirut Lebanon

Personalised recommendations