Skip to main content
Log in

Lumbar spine and proximal femur bone mineral density after contralateral total hip replacement

  • Original Articla
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Controversy persists regarding the eventual bone mineral density (BMD) variations in the contralateral hip and lumbar spine after unilateral primary total hip arthroplasty. Bone loss may occur if the operation requires a period of bed rest. The purpose of this study was to characterize BMD changes at these two sites after unilateral total hip replacement (THR). In this study, 52 male patients who underwent total hip arthroplasty with a cemented modular straight stem were included. BMD was assessed at the lumbar spine and the contralateral, nonoperated hip using the dual energy X-ray absorptiometry (DEXA) method. Measurements were done 1 month before the operation and at days 8, 90, 180, 365, and 710 postoperatively. No statistically significant BMD changes were present between the different measurements either in L2–L4 vertebrae or at any of the seven Grüen zones of the contralateral, nonoperated hip. Our results suggest that immediate full weightbearing permitted by cemented implants avoids bone loss from the proximal nonoperated femur and the lumbar spine and hence may prevent transformation of osteopenia to osteoporosis in older patients.

Résumé

La densité minérale osseuse du rachis lombaire et de la hanche controlatérale ne varie pas après prothèse totale de hanche cimentée. La mise en place de la tige fémorale d'une prothèse totale de hanche induit un pontage des contraintes dans le fémur proximal responsable d'une résorption osseuse bien documentée dans la littérature. La revue de la littérature concernant le comportement du fémur controlatéral et du rachis lombaire retrouve des études contradictoires. Le but de ce travail est l'étude du comportement osseux du fémur controlatéral et du rachis lombaire après prothèse totale de hanche unilatérale cimentée avec un appui post-opératoire immédiat. La série étudiée comporte 52 patients opérés d'une PTH unilatérale cimentée pour coxarthrose. Tous ont été suivis par des radiographies conventionnelles et des examens de type DPX de la hanche controlatérale et du rachis lombaire. Ces examens ont été réalisés un mois avant l'intervention puis à J8, J90, J180, J365, et J710. L'analyse a été effectuée à partir des mesures de la DMO corticale du col fémoral et trabéculaire au niveau des vertèbres L2-L4. La verticalisation de ces patients avec reprise de la marche avec appui immédiat a commencé en moyenne à J3-J4 post-opératoire. Résultats : la DPX n'a pas objectivé de diminution significative de la DMO chez aucun des patients inclus dans l'étude, ni au niveau du rachis lombaire, ni au niveau du col fémoral controlatéral. L'utilisation des tiges fémorales cimentées ou non cimentées, mais avec un dessin et un traitement de surface permettant un appui post-opératoire immédiat est à favoriser chez les patients âgés afin de diminuer le risque de perte osseuse accrue chez ces patients souvent déjà ostéoporotiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Adolphson P, Sivers KV, Dalen N, Jonsson U, Dahlborn M (1993) Bone and muscle mass after hip arthroplasty. A quantitative computed tomography study in 20 arthrosis cases. Acta orthop Scand 64 (2):181–184

    CAS  PubMed  Google Scholar 

  2. Adolphson P, Sivers KV, Dalen N, Jonsson U, Dahlborn M (1994) Decrease in vertebral bone density after hip arthroplasty; a quantitative computed tomography study in 18 arthrosis cases. Acta Orthop Scand 65 (1):12–14

    CAS  PubMed  Google Scholar 

  3. Berry DJ, Harmsen S, Ilstrup D (1995) Survivorship of uncemented proximally porous-coated femoral components. Clin Orthop 319:168–177

    PubMed  Google Scholar 

  4. Black DM, Daniels MD, Dunn HK, Kruger RA (1985) Computerized tomographic determination of vertebral density after total hip arthroplasty. Clin Orthop 198:259–263

    PubMed  Google Scholar 

  5. Charnley J (1979) Low friction arthroplasty of the hip: Theory and practice. Springer, Berlin Heidelberg New York pp 11–28

    Google Scholar 

  6. Cohen B, Rushton N (1995) Bone remodeling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg [Br] 77(5):815–819

    Google Scholar 

  7. Doladson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19(12):1071–1084

    PubMed  Google Scholar 

  8. Franck H, Munz M, Scherrer M (1997) Bone mineral density of opposing hips using dual energy X-ray absorptiometry in single beam and fan-beam design. Calcif Tissue Int 61:445–447

    Article  CAS  PubMed  Google Scholar 

  9. Grüen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  10. Howard GM, Nguyen TV, Pocock NA, Kelly PJ, Eisman JA (1997) Implications for assessment of osteoporosis and study design. Osteoporosis Int 7:190–194

    CAS  Google Scholar 

  11. Krolner B, Toft B (1983) An unheeded side effect of therapeutic bed rest. Clin Sci 64 (5):537–540

    CAS  PubMed  Google Scholar 

  12. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5 (8):843–850

    CAS  PubMed  Google Scholar 

  13. Leppala J, Kannus P, Natri A, Panasen M, Sievanen H, Vuori I, Jarvinen M (1999) Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-up study. Calcif Tissue Int 64(4):357–363

    Article  CAS  PubMed  Google Scholar 

  14. Martini F, Kremling E, Schmidt B, Sell S, Mayer F (1999) Bone mineral density of the proximal femur after unilateral cementless total hip replacement. Int Orthop 23:104–106

    Article  CAS  PubMed  Google Scholar 

  15. Martini F, Schmidt B, Kremling E, Sell S (1996) Cementless total hip replacement does not change bone mineral density of the lumbar spine; Dexa measurements in 50 patients. Acta Orthop Scand 67(4):352–354

    CAS  PubMed  Google Scholar 

  16. Merle D'Aubigne R, Postel M (1954) Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg [Am] 36451–475

  17. Niinimäki T, Jalovaara P (1995) Bone loss from the proximal femur after arthroplasty with an isoelastic stem; BMD measurements in 25 patients after 9 years. Acta Orthop Scand 66 (4):347–351

    Google Scholar 

  18. Oh I, Harris WH (1978) Proximal strain distribution in the loaded femur; an in vitro comparison of the distribution in the intact femur after insertion of different hip-replacement femoral components. J Bone Joint Surg [Am] 60(1):75–85

    Google Scholar 

  19. Pritchett JW (1995) Femoral bone loss following hip replacement. Clin Orthop 314:156–161

    PubMed  Google Scholar 

  20. Sabo D, Reiter A, Simank HG, Thomsen M, Lukoschek M, Ewerback V (1998) Longitudinal study and cross-sectional study on Titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62:177–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Nehme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nehme, A., Laroche, M., Tricoire, JL. et al. Lumbar spine and proximal femur bone mineral density after contralateral total hip replacement. Eur J Orthop Surg Traumatol 13, 73–76 (2003). https://doi.org/10.1007/s00590-003-0075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-003-0075-4

Keywords

Mots clés

Navigation