Abstract
Purpose
Screwed anterior lumbar interbody fusion (SALIF) alleviates the need for supplemental posterior fixation leading to reduction of perioperative morbidity. Specifically, elderly and multimorbid patients would benefit from shorter operative time and faster recovery but tend to have low bone mineral density (BMD). The current study aimed to compare loosening, defined as increase of ROM and NZ, of SALIF versus transforaminal lumbar interbody fusion (TLIF) under cyclic loading in cadaveric spines with reduced BMD.
Methods
Twelve human spines (L4–S2; 6 male 6 female donors; age 70.6 ± 19.6; trabecular BMD of L5 84.2 ± 24.4 mgHA/cm3, range 51–119 mgHA/cm3) were assigned to two groups. SALIF or TLIF were instrumented at L5/S1. Range of motion (ROM) and neutral zone (NZ) were assessed before and after axial cyclic loading (0–1150 N, 2000 cycles, 0.5 Hz) in flexion–extension (Flex–Ext), lateral bending, (LB), axial rotation (AR).
Results
ROM of the SALIF specimens increased significantly in all loading directions (p ≤ 0.041), except for left AR (p = 0.053), whereas for TLIF it increased significantly in left LB (p = 0.033) and Flex (p = 0.015). NZ of SALIF showed increase in Flex–Ext and LB, whereas NZ of TLIF did not increase significantly in any motion direction.
Conclusions
Axial compression loading caused loosening of SALIF in Flex–Ext and LB, but not TLIF at L5/S1 in low BMD specimens. Nevertheless, Post-cyclic ROM and NZ of SALIF is comparable to TLIF. This suggests that, neither construct is optimal for the use in patients with reduced BMD.
Similar content being viewed by others
References
Ravindra VM, Senglaub SS, Rattani A, Dewan MC, Härtl R, Bisson E, Park KB, Shrime MG (2018) Degenerative lumbar spine disease: estimating global incidence and worldwide volume. Global Spine J 8:784–794. https://doi.org/10.1177/2192568218770769
Neifert SN, Martini ML, Hanss K, Rothrock RJ, Gilligan J, Zimering J, Caridi JM, Oermann EK (2020) Large rises in thoracolumbar fusions by 2040: a cause for concern with an increasingly elderly surgical population. World Neurosurg 144:e25–e33. https://doi.org/10.1016/j.wneu.2020.06.241
Wasinpongwanich K, Nopsopon T, Pongpirul K (2022) Surgical treatments for lumbar spine diseases (TLIF vs. other surgical techniques): a systematic review and meta-analysis. Front Surg 9:829469. https://doi.org/10.3389/fsurg.2022.829469
Harms JG, Jeszenszky D (1998) Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik. Oper Orthop Traumatol 10:90–102. https://doi.org/10.1007/s00064-006-0112-7
Jover-Mendiola AD, Lopez-Prats FA, Lizaur-Utrilla A, Vizcaya-Moreno MF (2023) Patient-reported outcomes of minimally invasive versus open transforaminal lumbar interbody fusion for degenerative lumbar disc disease: a prospective comparative cohort study. Clin Orthop Surg 15:257–264. https://doi.org/10.4055/cios22250
Tung KK, Tseng WC, Wu YC, Chen KH, Pan CC, Lu WX, Shih CM, Lee CH (2023) Comparison of radiographic and clinical outcomes between ALIF, OLIF, and TLIF over 2-year follow-up: a comparative study. J Orthop Surg Res 18:158. https://doi.org/10.1186/s13018-023-03652-5
Ahlquist S, Thommen R, Park HY, Sheppard W, James K, Lord E, Shamie AN, Park DY (2020) Implications of sagittal alignment and complication profile with stand-alone anterior lumbar interbody fusion versus anterior posterior lumbar fusion. J Spine Surg 6:659–669. https://doi.org/10.21037/jss-20-595
Ajiboye RM, Alas H, Mosich GM, Sharma A, Pourtaheri S (2018) Radiographic and clinical outcomes of anterior and transforaminal lumbar interbody fusions: a systematic review and meta-analysis of comparative studies. Clin Spine Surg 31:E230-e238. https://doi.org/10.1097/bsd.0000000000000549
Kiapour A, Massaad E, Joukar A, Hadzipasic M, Shankar GM, Goel VK, Shin JH (2022) Biomechanical analysis of stand-alone lumbar interbody cages versus 360° constructs: an in vitro and finite element investigation. J Neurosurg Spine 36:928–936. https://doi.org/10.3171/2021.9.Spine21558
Choi KC, Ryu KS, Lee SH, Kim YH, Lee SJ, Park CK (2013) Biomechanical comparison of anterior lumbar interbody fusion: stand-alone interbody cage versus interbody cage with pedicle screw fixation—a finite element analysis. BMC Musculoskelet Disord 14:220. https://doi.org/10.1186/1471-2474-14-220
Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F (2005) A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine (Phila Pa 1976) 30:2631–2636. https://doi.org/10.1097/01.brs.0000187897.25889.54
Schleicher P, Gerlach R, Schär B, Cain CM, Achatz W, Pflugmacher R, Haas NP, Kandziora F (2008) Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion. Eur Spine J 17:1757–1765. https://doi.org/10.1007/s00586-008-0797-4
Lammli J, Whitaker MC, Moskowitz A, Duong J, Dong F, Felts L, Konye G, Ablah E, Wooley P (2014) Stand-alone anterior lumbar interbody fusion for degenerative disc disease of the lumbar spine: results with a 2-year follow-up. Spine (Phila Pa 1976) 39:E894–E901. https://doi.org/10.1097/brs.0000000000000393
Behrbalk E, Uri O, Parks RM, Musson R, Soh RC, Boszczyk BM (2013) Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2. Eur Spine J 22:2869–2875. https://doi.org/10.1007/s00586-013-2948-5
Guyer RD, Zigler JE, Blumenthal SL, Shellock JL, Ohnmeiss DD (2023) Evaluation of anterior lumbar interbody fusion performed using a stand-alone, integrated fusion cage. Int J Spine Surg 17:1–5. https://doi.org/10.14444/8354
Stenvers E, Mars RC, Zuurmond RG (2019) Frail patients benefit from less invasive procedures. Geriatr Orthop Surg Rehabil 10:2151459319885283. https://doi.org/10.1177/2151459319885283
Costa AG, Wyman A, Siris ES, Watts NB, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschifter J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Díez-Pérez A, Cooper C, Compston JE, Chapurlat RD, Boonen S, Anderson FA Jr, Adachi JD, Adami S (2013) When, where and how osteoporosis-associated fractures occur: an analysis from the global longitudinal study of osteoporosis in women (GLOW). PLoS ONE 8:e83306. https://doi.org/10.1371/journal.pone.0083306
Gehlbach SH, Avrunin JS, Puleo E, Spaeth R (2007) Fracture risk and antiresorptive medication use in older women in the USA. Osteoporos Int 18:805–810. https://doi.org/10.1007/s00198-006-0310-z
Bocahut N, Audureau E, Poignard A, Delambre J, Queinnec S, Flouzat Lachaniette CH, Allain J (2018) Incidence and impact of implant subsidence after stand-alone lateral lumbar interbody fusion. Orthop Traumatol Surg Res 104:405–410. https://doi.org/10.1016/j.otsr.2017.11.018
Parisien A, Wai EK, ElSayed MSA, Frei H (2022) Subsidence of spinal fusion cages: a systematic review. Int J Spine Surg 16:1103–1118. https://doi.org/10.14444/8363
Marie-Hardy L, Pascal-Moussellard H, Barnaba A, Bonaccorsi R, Scemama C (2020) Screw loosening in posterior spine fusion: prevalence and risk factors. Global Spine J 10:598–602. https://doi.org/10.1177/2192568219864341
Lehman RA Jr, Kang DG, Wagner SC (2015) Management of osteoporosis in spine surgery. J Am Acad Orthop Surg 23:253–263. https://doi.org/10.5435/jaaos-d-14-00042
Synthes GmbH (2022) SYNFIX™ Evolution secured spacer system surgical technique. In Oberdorf
Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154. https://doi.org/10.1007/s005860050045
Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762. https://doi.org/10.1097/00007632-199904150-00005
Brinckmann P, Grootenboer H (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 16:641–646. https://doi.org/10.1097/00007632-199106000-00008
Zengerle L, Fleege C, Pauli Di, von Treuheim T, Vogele D, Rauschmann M, Wilke HJ (2021) Georg Schmorl Prize of the German Spine Society (DWG) 2020: new biomechanical in vitro test method to determine subsidence risk of vertebral body replacements. Eur Spine J 30:1117–1124. https://doi.org/10.1007/s00586-021-06764-w
Jaeger A, Giber D, Bastard C, Thiebaut B, Roubineau F, Flouzat Lachaniette CH, Dubory A (2019) Risk factors of instrumentation failure and pseudarthrosis after stand-alone L5–S1 anterior lumbar interbody fusion: a retrospective cohort study. J Neurosurg Spine 31:338–346. https://doi.org/10.3171/2019.3.Spine181476
Kasis AG, Jensen C, Dharmadhikari R, Emmerson BR, Mawdsley M (2021) Novel bone grafting technique in stand-alone ALIF procedure combining allograft and autograft ('Northumbria technique’)-Fusion rate and functional outcomes in 100 consecutive patients. Eur Spine J 30:1296–1302. https://doi.org/10.1007/s00586-021-06758-8
Gruenewald LD, Koch V, Martin SS, Yel I, Eichler K, Gruber-Rouh T, Lenga L, Wichmann JL, Alizadeh LS, Albrecht MH, Mader C, Huizinga NA, D’Angelo T, Mazziotti S, Wesarg S, Vogl TJ, Booz C (2022) Diagnostic accuracy of quantitative dual-energy CT-based volumetric bone mineral density assessment for the prediction of osteoporosis-associated fractures. Eur Radiol 32:3076–3084. https://doi.org/10.1007/s00330-021-08323-9
Löffler MT, Jacob A, Scharr A, Sollmann N, Burian E, El Husseini M, Sekuboyina A, Tetteh G, Zimmer C, Gempt J, Baum T, Kirschke JS (2021) Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol 31:6069–6077. https://doi.org/10.1007/s00330-020-07655-2
Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976) 32:1077–1083. https://doi.org/10.1097/01.brs.0000261566.38422.40
Frankel BM, D’Agostino S, Wang C (2007) A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine 7:47–53. https://doi.org/10.3171/spi-07/07/047
Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (Phila Pa 1976) 28:991–996. https://doi.org/10.1097/01.Brs.0000061987.71624.17
Tan JS, Bailey CS, Dvorak MF, Fisher CG, Cripton PA, Oxland TR (2007) Cement augmentation of vertebral screws enhances the interface strength between interbody device and vertebral body. Spine (Phila Pa 1976) 32:334–341. https://doi.org/10.1097/01.brs.0000253645.24141.21
Wittenberg RH, Lee KS, Shea M, White AA 3rd, Hayes WC (1993) Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res 296:278–287
Cyriac M, Kyhos J, Iweala U, Lee D, Mantell M, Yu W, O’Brien JR (2018) Anterior lumbar interbody fusion with cement augmentation without posterior fixation to treat isthmic spondylolisthesis in an osteopenic patient—a surgical technique. Int J Spine Surg 12:322–327. https://doi.org/10.14444/5037
Widmer J, Cornaz F, Scheibler G, Spirig JM, Snedeker JG, Farshad M (2020) Biomechanical contribution of spinal structures to stability of the lumbar spine-novel biomechanical insights. Spine J 20:1705–1716. https://doi.org/10.1016/j.spinee.2020.05.541
Greenwood J, McGregor A, Jones F, Mullane J, Hurley M (2016) Rehabilitation following lumbar fusion surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976) 41:E28-36. https://doi.org/10.1097/brs.0000000000001132
Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 46:1077–1092
Niemeyer TK, Koriller M, Claes L, Kettler A, Werner K, Wilke HJ (2006) In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques. Neurosurgery 59:1271–1276. https://doi.org/10.1227/01.Neu.0000245609.01732.E4
White A (1990) Clinical biomechanics of the spine. Spine. https://doi.org/10.1097/00007632-198910000-00002
Acknowledgements
Part of this work was acknowledged by the Best Podium Presentation Award EORS 2023 31st Annual Meeting of the European Orthopaedic Research Society, Porto, Portugal.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jacob, A., Heumann, M., Zderic, I. et al. Cyclic testing of standalone ALIF versus TLIF in lumbosacral spines of low bone mineral density: an ex vivo biomechanical study. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08391-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00586-024-08391-7