Skip to main content
Log in

Flexible posterior vertebral tethering for the management of Scheuermann’s kyphosis: correction by using growth modulation—clinical and radiographic outcomes of the first 10 patients with at least 3 years of follow-up

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The present prospective cohort study was intended to present the minimum 3 years’ results of flexible posterior vertebral tethering (PVT) applied to 10 skeletally immature patients with SK to question, if it could be an alternative to fusion.

Methods

Ten skeletally immature patients with radiographically confirmed SK, who had flexible (minimum 35%) kyphotic curves (T2–T12), were included. A decision to proceed with PVT was based on curve progression within the brace, and/or persistent pain, and/or unacceptable cosmetic concerns of the patient/caregivers, and/or non-compliance within the brace.

Results

Patients had an average age of 13.1 (range 11–15) and an average follow-up duration of 47.6 months (range 36–60). Posterior vertebral tethering (PVT) was undertaken to all patients by utilizing Wiltse approach and placing monoaxial pedicle screws intermittently. At the final follow-up: mean pre-operative thoracic kyphosis and lumbar lordosis improved from 73.6°–45.7° to 34.7°–32.1°. Mean sagittal vertical axis, vertebral wedge angle and total SRS-22 scores improved significantly. A fulcrum lateral X-ray obtained at the latest follow-up, showed that the tethered levels remained mobile.

Conclusion

This study, for the first time in the literature, concluded, that as a result of growth modulation applied to skeletally immature patients with SK, flexible PVT was detected to yield gradual correction of the thoracic kyphosis by reverting the pathological vertebral wedging process, while keeping the mobility of the tethered segments in addition to successful clinical–functional results. The successful results of the present study answered the role of the PVT as a viable alternative to fusion in skeletally immature patients with SK.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sørensen KH (1964) Scheuermann’s juvenile kyphosis: clinical appearances, radiography, aetiology, and prognosis. Munksgaard, Copenhagen

    Google Scholar 

  2. Sardar ZM, Ames RJ, Lenke L (2019) Scheuermann’s kyphosis: diagnosis, management, and selecting fusion levels. J Am Acad Orthop Surg 27:e462–e472. https://doi.org/10.5435/JAAOS-D-17-00748

    Article  PubMed  Google Scholar 

  3. Zhu W, Sun X, Pan W et al (2019) Curve patterns deserve attention when determining the optimal distal fusion level in correction surgery for Scheuermann kyphosis. Spine J 19:1529–1539. https://doi.org/10.1016/j.spinee.2019.04.007

    Article  PubMed  Google Scholar 

  4. Polly DWJ, Ledonio CGT, Diamond B et al (2019) What are the indications for spinal fusion surgery in Scheuermann kyphosis? J Pediatr Orthop 39:217–221. https://doi.org/10.1097/BPO.0000000000000931

    Article  PubMed  Google Scholar 

  5. Horn SR, Poorman GW, Tishelman JC et al (2019) Trends in treatment of Scheuermann kyphosis: a study of 1,070 cases from 2003 to 2012. Spine Deform 7:100–106. https://doi.org/10.1016/j.jspd.2018.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Green DW, Lawhorne TW 3rd, Widmann RF et al (2011) Long-term magnetic resonance imaging follow-up demonstrates minimal transitional level lumbar disc degeneration after posterior spine fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 36:1948–1954. https://doi.org/10.1097/BRS.0b013e3181ff1ea9

    Article  PubMed  Google Scholar 

  7. Kepler CK, Meredith DS, Green DW, Widmann RF (2012) Long-term outcomes after posterior spine fusion for adolescent idiopathic scoliosis. Curr Opin Pediatr 24:68–75. https://doi.org/10.1097/MOP.0b013e32834ec982

    Article  PubMed  Google Scholar 

  8. Danielsson AJ, Romberg K, Nachemson AL (2006) Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case-control study. Spine (Phila Pa 1976) 31:275–283. https://doi.org/10.1097/01.brs.0000197652.52890.71

    Article  PubMed  Google Scholar 

  9. Samdani AF, Ames RJ, Kimball JS et al (2015) Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24:1533–1539. https://doi.org/10.1007/s00586-014-3706-z

    Article  Google Scholar 

  10. Samdani AF, Ames RJ, Kimball JS et al (2014) Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976) 39:1688–1693. https://doi.org/10.1097/BRS.0000000000000472

    Article  PubMed  Google Scholar 

  11. Pehlivanoglu T, Oltulu I, Erdag Y et al (2021) Double-sided vertebral body tethering of double adolescent idiopathic scoliosis curves: radiographic outcomes of the first 13 patients with 2 years of follow-up. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. https://doi.org/10.1007/s00586-021-06745-z

    Article  Google Scholar 

  12. Pehlivanoglu T, Oltulu I, Erdag Y et al (2021) Comparison of clinical and functional outcomes of vertebral body tethering to posterior spinal fusion in patients with adolescent idiopathic scoliosis and evaluation of quality of life: preliminary results. Spine Deform. https://doi.org/10.1007/s43390-021-00323-5

    Article  PubMed  Google Scholar 

  13. Mehkri Y, Hernandez J, McQuerry JL et al (2021) Global spine range of motion in patients with adolescent idiopathic scoliosis before and after corrective surgery. Cureus 13:e19362. https://doi.org/10.7759/cureus.19362

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baroncini A, Trobisch PD, Berrer A et al (2021) Return to sport and daily life activities after vertebral body tethering for AIS: analysis of the sport activity questionnaire. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 30:1998–2006. https://doi.org/10.1007/s00586-021-06768-6

    Article  Google Scholar 

  15. Nicolini LF, Kobbe P, Seggewiß J et al (2021) Motion preservation surgery for scoliosis with a vertebral body tethering system: a biomechanical study. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. https://doi.org/10.1007/s00586-021-07035-4

    Article  Google Scholar 

  16. Lowe TG, Wilson L, Chien J-T et al (2005) A posterior tether for fusionless modulation of sagittal plane growth in a sheep model. Spine (Phila Pa 1976) 30:S69-74. https://doi.org/10.1097/01.brs.0000175175.41471.d4

    Article  PubMed  Google Scholar 

  17. Pehlivanoglu T, Oltulu I, Ofluoglu E et al (2020) Thoracoscopic vertebral body tethering for adolescent idiopathic scoliosis: a minimum of 2 years’ results of 21 patients. J Pediatr Orthop. https://doi.org/10.1097/BPO.0000000000001590

    Article  PubMed  Google Scholar 

  18. Makurthou AA, Oei L, El Saddy S et al (2013) Scheuermann disease: evaluation of radiological criteria and population prevalence. Spine (Phila Pa 1976) 38:1690–1694. https://doi.org/10.1097/BRS.0b013e31829ee8b7

    Article  PubMed  Google Scholar 

  19. Nault M-L, Parent S, Phan P et al (2010) A modified Risser grading system predicts the curve acceleration phase of female adolescent idiopathic scoliosis. J Bone Joint Surg Am 92:1073–1081. https://doi.org/10.2106/JBJS.H.01759

    Article  PubMed  Google Scholar 

  20. Sanders JO, Browne RH, McConnell SJ et al (2007) Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am 89:64–73. https://doi.org/10.2106/JBJS.F.00067

    Article  PubMed  Google Scholar 

  21. Newton PO, Kluck DG, Saito W et al (2018) Anterior spinal growth tethering for skeletally immature patients with scoliosis: a retrospective look two to four years postoperatively. J Bone Joint Surg Am 100:1691–1697. https://doi.org/10.2106/JBJS.18.00287

    Article  PubMed  Google Scholar 

  22. Bezalel T, Carmeli E, Been E, Kalichman L (2014) Scheuermann’s disease: current diagnosis and treatment approach. J Back Musculoskelet Rehabil 27:383–390. https://doi.org/10.3233/BMR-140483

    Article  PubMed  Google Scholar 

  23. Poolman RW, Been HD, Ubags LH (2002) Clinical outcome and radiographic results after operative treatment of Scheuermann’s disease. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 11:561–569. https://doi.org/10.1007/s00586-002-0418-6

    Article  CAS  Google Scholar 

  24. Lonner BS, Newton P, Betz R et al (2007) Operative management of Scheuermann’s kyphosis in 78 patients: radiographic outcomes, complications, and technique. Spine (Phila Pa 1976) 32:2644–2652. https://doi.org/10.1097/BRS.0b013e31815a5238

    Article  PubMed  Google Scholar 

  25. Geck MJ, Macagno A, Ponte A, Shufflebarger HL (2007) The Ponte procedure: posterior only treatment of Scheuermann’s kyphosis using segmental posterior shortening and pedicle screw instrumentation. J Spinal Disord Tech 20:586–593. https://doi.org/10.1097/BSD.0b013e31803d3b16

    Article  PubMed  Google Scholar 

  26. Aulisa AG, Marsiolo M, Calogero V et al (2023) Long-term outcome after brace treatment of Scheuermann’s kyphosis: an observational controlled cohort study. Eur J Phys Rehabil Med 59:529–534. https://doi.org/10.23736/S1973-9087.23.08070-X

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lowe TG, Line BG (2007) Evidence based medicine: analysis of Scheuermann kyphosis. Spine (Phila Pa 1976) 32:S115–S119. https://doi.org/10.1097/BRS.0b013e3181354501

    Article  PubMed  Google Scholar 

  28. Huq S, Ehresman J, Cottrill E et al (2019) Treatment approaches for Scheuermann kyphosis: a systematic review of historic and current management. J Neurosurg Spine 32:235–247. https://doi.org/10.3171/2019.8.SPINE19500

    Article  PubMed  Google Scholar 

  29. Etemadifar MR, Jamalaldini MH, Layeghi R (2017) Successful brace treatment of Scheuermann’s kyphosis with different angles. J Craniovertebr Junction Spine 8:136–143. https://doi.org/10.4103/jcvjs.JCVJS_38_16

    Article  PubMed  PubMed Central  Google Scholar 

  30. Riddle EC, Bowen JR, Shah SA et al (2003) The duPont kyphosis brace for the treatment of adolescent Scheuermann kyphosis. J South Orthop Assoc 12:135–140

    PubMed  Google Scholar 

  31. Piazzolla A, Bizzoca D, Solarino G et al (2021) Maria Adelaide brace in the management of Scheuermann’s Kyphosis. Spine Deform 9:549–557. https://doi.org/10.1007/s43390-020-00225-y

    Article  PubMed  Google Scholar 

  32. Sachs B, Bradford D, Winter R et al (1987) Scheuermann kyphosis. Follow-up of Milwaukee-brace treatment. J Bone Joint Surg Am 69:50–57

    Article  CAS  PubMed  Google Scholar 

  33. Soo CL, Noble PC, Esses SI (2002) Scheuermann kyphosis: long-term follow-up. Spine J 2:49–56. https://doi.org/10.1016/s1529-9430(01)00168-1

    Article  CAS  PubMed  Google Scholar 

  34. Sharifi P, Kamyab M, Babaee T, Ganjavian MS (2019) Objective monitoring of brace wearing time in adolescents with Scheuermann’s kyphosis. Asian Spine J 13:942–948. https://doi.org/10.31616/asj.2019.0008

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rahman T, Bowen JR, Takemitsu M, Scott C (2005) The association between brace compliance and outcome for patients with idiopathic scoliosis. J Pediatr Orthop 25:420–422. https://doi.org/10.1097/01.bpo.0000161097.61586.bb

    Article  PubMed  Google Scholar 

  36. Newton PO, Farnsworth CL, Faro FD et al (2008) Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine (Phila Pa 1976) 33:724–733. https://doi.org/10.1097/BRS.0b013e31816950a0

    Article  PubMed  Google Scholar 

  37. Newton PO, Fricka KB, Lee SS et al (2002) Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine (Phila Pa 1976) 27:689–693

    Article  PubMed  Google Scholar 

  38. Braun JT, Ogilvie JW, Akyuz E et al (2004) Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine (Phila Pa 1976) 29:1980–1989

    Article  PubMed  Google Scholar 

  39. Newton PO, Bartley CE, Bastrom TP et al (2020) Anterior spinal growth modulation in skeletally immature patients with idiopathic scoliosis: a comparison with posterior spinal fusion at 2 to 5 years postoperatively. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.19.01176

    Article  PubMed  Google Scholar 

  40. Denis F, Sun EC, Winter RB (2009) Incidence and risk factors for proximal and distal junctional kyphosis following surgical treatment for Scheuermann kyphosis: minimum five-year follow-up. Spine (Phila Pa 1976) 34:E729–E734. https://doi.org/10.1097/BRS.0b013e3181ae2ab2

    Article  PubMed  Google Scholar 

  41. Otsuka NY, Hall JE, Mah JY (1990) Posterior fusion for Scheuermann’s kyphosis. Clin Orthop Relat Res 251:134–139

    Article  Google Scholar 

  42. Lowe TG, Kasten MD (1994) An analysis of sagittal curves and balance after Cotrel-Dubousset instrumentation for kyphosis secondary to Scheuermann’s disease. A review of 32 patients. Spine (Phila Pa 1976) 19:1680–1685. https://doi.org/10.1097/00007632-199408000-00005

    Article  CAS  PubMed  Google Scholar 

  43. Cho K-J, Lenke LG, Bridwell KH et al (2009) Selection of the optimal distal fusion level in posterior instrumentation and fusion for thoracic hyperkyphosis: the sagittal stable vertebra concept. Spine (Phila Pa 1976) 34:765–770. https://doi.org/10.1097/BRS.0b013e31819e28ed

    Article  PubMed  Google Scholar 

  44. Kim HJ, Nemani V, Boachie-Adjei O et al (2017) Distal fusion level selection in Scheuermann’s kyphosis: a comparison of lordotic disc segment versus the sagittal stable vertebrae. Glob spine J 7:254–259. https://doi.org/10.1177/2192568217699183

    Article  Google Scholar 

  45. Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976) 38:E803–E812. https://doi.org/10.1097/BRS.0b013e318292b7b9

    Article  PubMed  Google Scholar 

  46. Rothenfluh DA, Mueller DA, Rothenfluh E, Min K (2015) Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24:1251–1258. https://doi.org/10.1007/s00586-014-3454-0

    Article  Google Scholar 

  47. Jiang L, Qiu Y, Xu L et al (2014) Sagittal spinopelvic alignment in adolescents associated with Scheuermann’s kyphosis: a comparison with normal population. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 23:1420–1426. https://doi.org/10.1007/s00586-014-3266-2

    Article  Google Scholar 

  48. Loder RT (2001) The sagittal profile of the cervical and lumbosacral spine in Scheuermann thoracic kyphosis. J Spinal Disord 14:226–231. https://doi.org/10.1097/00002517-200106000-00007

    Article  CAS  PubMed  Google Scholar 

  49. Ashraf A, Noelle Larson A, Polly DW et al (2014) Change in sagittal plane alignment following surgery for Scheuermann’s kyphosis. Spine Deform 2:404–409. https://doi.org/10.1016/j.jspd.2014.04.013

    Article  PubMed  Google Scholar 

  50. Samdani AF, Pahys JM, Ames RJ et al (2021) Prospective follow-up report on anterior vertebral body tethering for idiopathic scoliosis: interim results from an FDA IDE study. J Bone Joint Surg Am 103:1611–1619. https://doi.org/10.2106/JBJS.20.01503

    Article  PubMed  Google Scholar 

  51. Trobisch P, Baroncini A, Berrer A, Da Paz S (2022) Difference between radiographically suspected and intraoperatively confirmed tether breakages after vertebral body tethering for idiopathic scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. https://doi.org/10.1007/s00586-021-07107-5

    Article  Google Scholar 

Download references

Funding

Mehmet AYDOGAN, Tuna PEHLIVANOGLU, Yigit ERDAG, Umut Dogu AKTURK, Abdulhalim AKAR declared, that they have never received any financial support.

Author information

Authors and Affiliations

Authors

Contributions

Mehmet Aydogan: Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Tuna Pehlivanoglu Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Yigit Erdag Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Umut Dogu Akturk Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Abdülhalim Akar Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Tuna Pehlivanoglu.

Ethics declarations

Conflict of interest

Mehmet AYDOGAN, Tuna PEHLIVANOGLU, Yigit ERDAG, Umut Dogu AKTURK, Abdulhalim AKAR declared, that have no conflict of interest.

Ethics approval

This study received institutional review board approval.

Informed consent

The patient was taken informed consent regarding the participation to the present study and publication of their clinical and radiographic data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogan, M., Pehlivanoglu, T., Erdag, Y. et al. Flexible posterior vertebral tethering for the management of Scheuermann’s kyphosis: correction by using growth modulation—clinical and radiographic outcomes of the first 10 patients with at least 3 years of follow-up. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08297-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-024-08297-4

Keywords

Navigation