Skip to main content
Log in

Imaging anatomy study related to unilateral biportal endoscopic lumbar spine surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To provide lumbar spine anatomical parameters relevant to the UBE technique and explore their intraoperative application.

Methods

CT imaging data processed by Mimics for parametric measurements, including laminar abduction angle (LAA), laminar slope angle (LSA), minimum laminar height (MLH), distance between the inferior margin of the lamina and attachment of the ligamentum flavum onto the cephalad lamina (DLL), distance between the initial point and the middle of the articular process (DIA), and distance from the inferior margin of the lamina to the inferior border of the vertebral body (DLV), and were manually measured.

Results

LAA and DIA gradually increase from L1 to L5. At L1, the DIA is approximately the length of 2 drill bits with a diameter of 3 mm (male: 7.77 ± 1.39 mm, female: 7.22 ± 1.09 mm), while at L5, it can reach the length of 4–5 drill bits (male: 14.96 ± 2.24 mm, female: 13.67 ± 2.33 mm). MLH, DLL, and DLV reach their maximum values at the L3 and decrease toward the cranial and caudal ends. The DLL is smallest at L5 (male: 9.58 ± 1.90 mm, female: 9.38 ± 2.14 mm), equivalent to the length of 3 drill bits, while the DLL at L3 is the length of 4–5 drill bits (male: 14.17 ± 2.13 mm, female: 14.01 ± 2.07 mm).

Conclusion

Referring to the drill diameter during surgery can mark the extent of laminotomy. The characteristics of vertebral plate angles at different lumbar levels can provide references for preoperative incision design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibson JN, Waddell G (2005) Surgery for degenerative lumbar spondylosis. Cochrane Database Syst Rev 2005:CD001352

    PubMed  PubMed Central  Google Scholar 

  2. Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976) 18:575–581

    Article  CAS  PubMed  Google Scholar 

  3. Soliman HM (2013) Irrigation endoscopic discectomy: a novel percutaneous approach for lumbar disc prolapse. Eur Spine J 22:1037–1044

    Article  PubMed  PubMed Central  Google Scholar 

  4. Choi DJ, Choi CM, Jung JT, Lee SJ, Kim YS (2016) Learning curve associated with complications in biportal endoscopic spinal surgery: challenges and strategies, Asian. Spine J 10:624–629

    Google Scholar 

  5. Choi CM (2020) Biportal endoscopic spine surgery (BESS): considering merits and pitfalls. J Spine Surg 6:457–465

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang JC, Li ZZ, Cao Z, Zhu JL, Zhao HL, Hou SX (2023) Modified unilateral biportal endoscopic lumbar discectomy results in improved clinical outcomes. World Neurosurg 169:e235–e244

    Article  PubMed  Google Scholar 

  7. Pao JL, Lin SM, Chen WC, Chang CH (2020) Unilateral biportal endoscopic decompression for degenerative lumbar canal stenosis. J Spine Surg 6:438–446

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heo DH, Son SK, Eum JH, Park CK (2017) Fully endoscopic lumbar interbody fusion using a percutaneous unilateral biportal endoscopic technique: technical note and preliminary clinical results. Neurosurg Focus 43:E8

    Article  PubMed  Google Scholar 

  9. Choi CM, Chung JT, Lee SJ, Choi DJ (2016) How I do it? Biportal endoscopic spinal surgery (BESS) for treatment of lumbar spinal stenosis. Acta Neurochir (Wien) 158:459–463

    Article  PubMed  Google Scholar 

  10. Song KS, Lee CW, Moon JG (2019) Biportal endoscopic spinal surgery for bilateral lumbar foraminal decompression by switching surgeon’s position and primary 2 portals: a report of 2 cases with technical note. Neurospine 16:138–147

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim JE, Choi DJ, Park E, Lee HJ, Hwang JH, Kim MC, Oh JS (2019) Biportal endoscopic spinal surgery for lumbar spinal stenosis, Asian. Spine J 13:334–342

    Google Scholar 

  12. Kim JS, Park CW, Yeung YK, Suen TK, Jun SG, Park JH (2021) Unilateral Bi-portal endoscopic decompression via the contralateral approach in asymmetric spinal stenosis: a technical note, Asian. Spine J 15:688–700

    Google Scholar 

  13. Xu R, Burgar A, Ebraheim NA, Yeasting RA (1999) The quantitative anatomy of the laminas of the spine. Spine (Phila Pa 1976) 24:107–113

    Article  CAS  PubMed  Google Scholar 

  14. Ebraheim NA, Miller RM, Xu R, Yeasting RA (1997) The location of the intervertebral lumbar disc on the posterior aspect of the spine. Surg Neurol 48:232–236

    Article  CAS  PubMed  Google Scholar 

  15. Ebraheim NA, Lu J, Hao Y, Biyani A, Yeasting RA (1997) Anatomic considerations of the lumbar isthmus. Spine (Phila Pa 1976) 22:941–945

    Article  CAS  PubMed  Google Scholar 

  16. Jianye W, Xin L, Lin T, Ning S, Yuefei L, Jingwei B, Changzhen L, Zhaozhong S (2023) Measuring the position relation between nerve tissue and bony structure in lumbar spinal canal decompression area by constructing a three-dimensional model of the lumbar spine. Chin J Tissue Eng Res 27:539–546

    Google Scholar 

  17. Hwa EJ, Hwa HD, Son SK, Park CK (2016) Percutaneous biportal endoscopic decompression for lumbar spinal stenosis: a technical note and preliminary clinical results. J Neurosurg Spine 24:602–607

    Article  Google Scholar 

  18. Kim JY, Heo DH (2021) Contralateral sublaminar approach for decompression of the combined lateral recess, foraminal, and extraforaminal lesions using biportal endoscopy: a technical report. Acta Neurochir (Wien) 163:2783–2787

    Article  PubMed  Google Scholar 

  19. Olszewski AD, Yaszemski MJ, White AR (1996) The anatomy of the human lumbar ligamentum flavum. New observations and their surgical importance. Spine (Phila Pa 1976) 21:2307–2312

    Article  CAS  PubMed  Google Scholar 

  20. Min WK, Kim JE, Choi DJ, Park EJ, Heo J (2020) Clinical and radiological outcomes between biportal endoscopic decompression and microscopic decompression in lumbar spinal stenosis. J Orthop Sci 25:371–378

    Article  PubMed  Google Scholar 

  21. Iizuka Y, Iizuka H, Mieda T, Tajika T, Yamamoto A, Takagishi K (2016) Epidemiology and associated radiographic spinopelvic parameters of symptomatic degenerative lumbar scoliosis: are radiographic spinopelvic parameters associated with the presence of symptoms or decreased quality of life in degenerative lumbar scoliosis? Eur Spine J 25:2514–2519

    Article  PubMed  Google Scholar 

  22. Natarajan RN, Andersson GB, Patwardhan AG, Andriacchi TP (1999) Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints. J Biomech Eng 121:215–221

    Article  CAS  PubMed  Google Scholar 

  23. Hamasaki T, Tanaka N, Kim J, Okada M, Ochi M, Hutton WC (2009) Biomechanical assessment of minimally invasive decompression for lumbar spinal canal stenosis: a cadaver study. J Spinal Disord Tech 22:486–491

    Article  PubMed  Google Scholar 

  24. Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976) 15:1142–1147

    Article  CAS  PubMed  Google Scholar 

  25. De Antoni DJ, Claro ML, Poehling GG, Hughes SS (1996) Translaminar lumbar epidural endoscopy: anatomy, technique, and indications. Arthroscopy 12:330–334

    Article  PubMed  Google Scholar 

  26. Ozer AF, Oktenoglu T, Sasani M, Bozkus H, Canbulat N, Karaarslan E, Sungurlu SF, Sarioglu AC (2006) Preserving the ligamentum flavum in lumbar discectomy: a new technique that prevents scar tissue formation in the first 6 months postsurgery. Neurosurgery 59:ONS 126-ONS133 (discussion ONS126–33)

    Google Scholar 

  27. Aydin Y, Ziyal IM, Duman H, Turkmen CS, Basak M, Sahin Y (2002) Clinical and radiological results of lumbar microdiskectomy technique with preserving of ligamentum flavum comparing to the standard microdiskectomy technique. Surg Neurol 57:5–13 (discussion 13–4)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaowei Lin or Benchao Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Zhang, J., Zeng, W. et al. Imaging anatomy study related to unilateral biportal endoscopic lumbar spine surgery. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-024-08270-1

Keywords

Navigation