Skip to main content

Advertisement

Log in

A critical event frequent lead to reversible spinal cord injury during vertebral column resection surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Objective

To report a “critical phase” (between osteotomy completion and correction beginning) that will frequently lead to the reversible intraoperative neurophysiological monitoring (IOM) change during posterior vertebral column resection (PVCR) surgery.

Methods

The study sample consisted of 120 patients with severe spine deformity who underwent PVCR and deformity correction surgeries. Those patients were recruited consecutively from 2010 to 2018 January in our spine center. The detailed IOM data (the amplitude of MEP & SEP) and its corresponding surgical points were collected prospectively. Early and long-term postoperative neurologic outcomes were assessed for the following functions: motor, sensory, and pain at immediate postoperative and 1-year post-operation in this cases series.

Results

A total of 105 (105/120) patients presented varying degrees of IOM reduction in the critical phase; the mean IOM amplitude retention vs rescue rate was 27% ± 11.2 versus 58% ± 16.9, P < 0.01 (MEP) & 34% ± 8.3 versus 66% ± 12.4 P < 0.01 (SEP). Patients with postoperative spinal deficits often had a significantly longer IOM-alerting duration than the patients without (p < 0.01, Mann–Whitney U-test), and IOM-alerting duration greater than 39.5 min was identified as an independent predictor of the risk of postoperative spinal deficits.

Conclusions

The reversible IOM events probably often appear in the critical phase during PVCR surgery. The new postoperative spinal deficits are possible for patients without satisfied IOM recovery or alerting duration greater than 39.5 min. Timely and suitable surgical interventions are useful for rescuing the IOM alerts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bradford DS, Tribus CB (1997) Vertebral column resection for the treatment of rigid coronal decompensation. Spine 22:1590–1599

    Article  CAS  PubMed  Google Scholar 

  2. Suk SI, Kim JH, Kim WJ, Lee SM, Chung ER, Nah KH (2002) Posterior vertebral column resection for severe spinal deformities. Spine 27:2374–2382. https://doi.org/10.1097/01.BRS.0000032026.72156.1D

    Article  PubMed  Google Scholar 

  3. Suk SI, Chung ER, Kim JH, Kim SS, Lee JS, Choi WK (2005) Posterior vertebral column resection for severe rigid scoliosis. Spine 30:1682–1687

    Article  PubMed  Google Scholar 

  4. Lenke LG, Sides BA, Koester LA, Hensley M, Blanke KM (2010) Vertebral column resection for the treatment of severe spinal deformity. Clin Orthop Relat R 468:687–699. https://doi.org/10.1007/s11999-009-1037-x

    Article  Google Scholar 

  5. Zhang J, Wang S, Weng X, Li Q (2014) Posterior vertebral column resection in a 10-year-old boy with haemophilia B and congenital kyphosis - a case report and literature review. Haemophilia 20:e364–e367. https://doi.org/10.1111/hae.12490

    Article  CAS  PubMed  Google Scholar 

  6. Lenke LG, Newton PO, Sucato DJ, Shufflebarger HL, Emans JB, Sponseller PD, Shah SA, Sides BA, Blanke KM (2013) Complications after 147 consecutive vertebral column resections for severe pediatric spinal deformity: a multicenter analysis. Spine 38:119–132. https://doi.org/10.1097/BRS.0b013e318269fab1

    Article  PubMed  Google Scholar 

  7. Pastorelli F, Di Silvestre M, Plasmati R, Michelucci R, Greggi T, Morigi A, Bacchin MR, Bonarelli S, Cioni A, Vommaro F, Fini N, Lolli F, Parisini P (2011) The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J: Offic Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervical Spine Res Soc 20(Suppl 1):S105-114. https://doi.org/10.1007/s00586-011-1756-z

    Article  Google Scholar 

  8. Park P, Wang AC, Sangala JR, Kim SM, Hervey-Jumper S, Than KD, Farokhrani A, Lamarca F (2011) Impact of multimodal intraoperative monitoring during correction of symptomatic cervical or cervicothoracic kyphosis. J Neurosurg Spine 14:99–105. https://doi.org/10.3171/2010.9.SPINE1085

    Article  PubMed  Google Scholar 

  9. Lascano AM, Lalive PH, Hardmeier M, Fuhr P, Seeck M (2017) Clinical evoked potentials in neurology: a review of techniques and indications. J Neurol Neurosurg Psychiatry 88:688–696. https://doi.org/10.1136/jnnp-2016-314791

    Article  PubMed  Google Scholar 

  10. Jarvis JG, Strantzas S, Lipkus M, Holmes LM, Dear T, Magana S, Lebel DE, Lewis SJ (2013) Responding to neuromonitoring changes in 3-column posterior spinal osteotomies for rigid pediatric spinal deformities. Spine 38:E493-503. https://doi.org/10.1097/BRS.0b013e3182880378

    Article  PubMed  Google Scholar 

  11. Lewis ND, Keshen SG, Lenke LG, Zywiel MG, Skaggs DL, Dear TE, Strantzas S, Lewis SJ (2015) The deformity angular ratio: does it correlate with high-risk cases for potential spinal cord monitoring alerts in pediatric 3-column thoracic spinal deformity corrective surgery? Spine 40:E879-885. https://doi.org/10.1097/BRS.0000000000000984

    Article  PubMed  Google Scholar 

  12. Cheh G, Lenke LG, Padberg AM, Kim YJ, Daubs MD, Kuhns C, Stobbs G, Hensley M (2008) Loss of spinal cord monitoring signals in children during thoracic kyphosis correction with spinal osteotomy: why does it occur and what should you do? Spine 33:1093–1099. https://doi.org/10.1097/BRS.0b013e31816f5f73

    Article  PubMed  Google Scholar 

  13. Yoshida G, Ando M, Imagama S, Kawabata S, Yamada K, Kanchiku T, Fujiwara Y, Tadokoro N, Takahashi M, Wada K, Yamamoto N, Kobayashi S, Ushirozako H, Kobayashi K, Yasuda A, Tani T, Matsuyama Y (2019) Alert timing and corresponding intervention with intraoperative spinal cord monitoring for high-risk spinal surgery. Spine 44:E470–E479. https://doi.org/10.1097/BRS.0000000000002900

    Article  PubMed  Google Scholar 

  14. Wang Y, Xie J, Zhao Z, Li T, Bi N, Zhang Y, Shi Z (2017) Proper responding strategies to neuromonitoring alerts during correction step in posterior vertebral column resection patients with severe rigid deformities can reduce postoperative neurologic deficits. Spine 42:1680–1686. https://doi.org/10.1097/BRS.0000000000002320

    Article  PubMed  Google Scholar 

  15. Wang S, Yang Y, Zhang J, Tian Y, Shen J, Wang S (2017) Frequent neuromonitoring loss during the completion of vertebral column resections in severe spinal deformity surgery. Spine J: Offic J North Am Spine Soc 17:76–80. https://doi.org/10.1016/j.spinee.2016.08.002

    Article  Google Scholar 

  16. Raynor BL, Bright JD, Lenke LG, Rahman RK, Bridwell KH, Riew KD, Buchowski JM, Luhmann SJ, Padberg AM (2013) Significant change or loss of intraoperative monitoring data: a 25-year experience in 12,375 spinal surgeries. Spine 38:E101-108. https://doi.org/10.1097/BRS.0b013e31827aafb9

    Article  PubMed  Google Scholar 

  17. Kempton LB, Nantau WE, Zaltz I (2010) Successful monitoring of transcranial electrical motor evoked potentials with isoflurane and nitrous oxide in scoliosis surgeries. Spine 35:E1627–E1629. https://doi.org/10.1097/BRS.0b013e3181cc8dba

    Article  PubMed  Google Scholar 

  18. Martin DP, Bhalla T, Thung A, Rice J, Beebe A, Samora W, Klamar J, Tobias JD (2014) A preliminary study of volatile agents or total intravenous anesthesia for neurophysiological monitoring during posterior spinal fusion in adolescents with idiopathic scoliosis. Spine 39:E1318–E1324. https://doi.org/10.1097/Brs.0000000000000550

    Article  PubMed  Google Scholar 

  19. Tamkus AA, Rice KS, Kim HL (2014) Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J 14:1440–1446. https://doi.org/10.1016/j.spinee.2013.08.037

    Article  PubMed  Google Scholar 

  20. Jeszenszky D, Haschtmann D, Kleinstuck FS, Sutter M, Eggspuhler A, Weiss M, Fekete TF (2014) Posterior vertebral column resection in early onset spinal deformities. Eur Spine J: Offic Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervic Spine Res Soc 23:198–208. https://doi.org/10.1007/s00586-013-2924-0

    Article  CAS  Google Scholar 

  21. Lenke LG, O’Leary PT, Bridwell KH, Sides BA, Koester LA, Blanke KM (2009) Posterior vertebral column resection for severe pediatric deformity: minimum two-year follow-up of thirty-five consecutive patients. Spine 34:2213–2221. https://doi.org/10.1097/BRS.0b013e3181b53cba

    Article  PubMed  Google Scholar 

  22. Ozturk C, Alanay A, Ganiyusufoglu K, Karadereler S, Ulusoy L, Hamzaoglu A (2012) Short-term X-ray results of posterior vertebral column resection in severe congenital kyphosis, scoliosis, and kyphoscoliosis. Spine 37:1054–1057. https://doi.org/10.1097/BRS.0b013e31823b4142

    Article  PubMed  Google Scholar 

  23. Lyon R, Lieberman JA, Grabovac MT, Hu S (2004) Strategies for managing decreased motor evoked potential signals while distracting the spine during correction of scoliosis. J Neurosurg Anesth 16:167–170. https://doi.org/10.1097/00008506-200404000-00012

    Article  Google Scholar 

  24. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ, Drummond DS (2007) Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 89:2440–2449. https://doi.org/10.2106/JBJS.F.01476

    Article  PubMed  Google Scholar 

  25. Samdani AF, Bennett JT, Ames RJ, Asghar JK, Orlando G, Pahys JM, Yaszay B, Miyanji F, Lonner BS, Lehman RA Jr, Newton PO, Cahill PJ, Betz RR (2016) Reversible intraoperative neurophysiologic monitoring alerts in patients undergoing arthrodesis for adolescent idiopathic scoliosis: what are the outcomes of surgery? J Bone Joint Surg Am 98:1478–1483. https://doi.org/10.2106/JBJS.15.01379

    Article  PubMed  Google Scholar 

  26. Enercan M, Ozturk C, Kahraman S, Sarier M, Hamzaoglu A, Alanay A (2013) Osteotomies/spinal column resections in adult deformity. Eur Spine J: Offic Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cervic Spine Res Soc 22(Suppl 2):S254-264. https://doi.org/10.1007/s00586-012-2313-0

    Article  Google Scholar 

  27. Xie JM, Wang YS, Zhao Z, Zhang Y, Si YY, Li T, Yang ZD, Liu LP (2012) Posterior vertebral column resection for correction of rigid spinal deformity curves greater than 100 Clinical article. J Neurosurg-Spine 17:540–551. https://doi.org/10.3171/2012.9.SPINE111026

    Article  PubMed  Google Scholar 

  28. Wang S, Ren Z, Yang Z, Zhang J (2020) A rare intraoperative spinal cord injury caused by thoracic 8 nerve root interruption during posterior vertebral column resection surgery for severe congenital kyphoscoliosis: a case report. BMC Neurol 20:203. https://doi.org/10.1186/s12883-020-01785-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buckland AJ, Moon JY, Betz RR, Lonner BS, Newton PO, Shufflebarger HL, Errico TJ, Harms Study G (2019) Ponte Osteotomies increase the risk of neuromonitoring alerts in adolescent idiopathic scoliosis correction surgery. Spine 44:E175–E180. https://doi.org/10.1097/BRS.0000000000002784

    Article  Google Scholar 

  30. Kobayashi K, Ando K, Shinjo R, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Ishiguro N, Imagama S (2018) Evaluation of a combination of waveform amplitude and peak latency in intraoperative spinal cord monitoring. Spine 43:1231–1237. https://doi.org/10.1097/BRS.0000000000002579

    Article  PubMed  Google Scholar 

  31. Morris SH, Howard JJ, Rasmusson DD, El-Hawary R (2015) Validity of transcranial motor evoked potentials as early indicators of neural compromise in rat model of spinal cord compression. Spine 40:E492–E497. https://doi.org/10.1097/Brs.0000000000000808

    Article  PubMed  Google Scholar 

  32. Suzuki K, Kodama N, Sasaki T, Matsumoto M, Konno Y, Sakuma J, Oinuma M, Murakawa M (2003) Intraoperative monitoring of blood flow insufficiency in the anterior choroidal artery during aneurysm surgery. J Neurosurg 98:507–514. https://doi.org/10.3171/jns.2003.98.3.0507

    Article  PubMed  Google Scholar 

  33. Li ZB, Fan X, Wang MR, Tao XR, Qi L, Ling M, Guo DZ, Qiao H (2019) Prediction of postoperative motor deficits using motor evoked potential deterioration duration in intracranial aneurysm surgery. Clin Neurophysiol 130:707–713. https://doi.org/10.1016/j.clinph.2019.02.010

    Article  PubMed  Google Scholar 

  34. Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113:1082–1091

    Article  PubMed  Google Scholar 

  35. Vitale MG, Moore DW, Matsumoto H, Emerson RG, Booker WA, Gomez JA, Gallo EJ, Hyman JE, Roye DP (2010) Risk factors for spinal cord injury during surgery for spinal deformity. J Bone Joint Surg-Am 92A:64–71. https://doi.org/10.2106/Jbjs.H.01839

    Article  Google Scholar 

  36. Legatt AD (2002) Current practice of motor evoked potential monitoring: results of a survey. J Clin Neurophysiol 19:454–460. https://doi.org/10.1097/00004691-200210000-00008

    Article  PubMed  Google Scholar 

  37. Owen JH, Laschinger J, Bridwell K, Shimon S, Nielsen C, Dunlap J, Kain C (1988) Sensitivity and specificity of somatosensory and neurogenic-motor evoked potentials in animals and humans. Spine 13:1111–1118

    Article  CAS  PubMed  Google Scholar 

  38. Owen JH, Bridwell KH, Grubb R, Jenny A, Allen B, Padberg AM, Shimon SM (1991) The clinical application of neurogenic motor evoked potentials to monitor spinal cord function during surgery. Spine 16:S385-390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhang.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., He, F., Guo, L. et al. A critical event frequent lead to reversible spinal cord injury during vertebral column resection surgery. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08263-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-024-08263-0

Keywords

Navigation