Skip to main content
Log in

Radiographic and surgery-related predictive factors for increased segmental lumbar lordosis following lumbar fusion surgery in patients with degenerative lumbar spondylolisthesis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Objective

This study aimed to evaluate preoperative (pre-op) radiographic characteristics and specific surgical interventions in patients with degenerative lumbar spondylolisthesis (DLS) who underwent lumbar fusion surgery (LFS), with a focus on analyzing predictors of postoperative restoration of segmental lumbar lordosis (SLL).

Methods

A retrospective review at a single center identified consecutive single-level DLS patients who underwent LFS between 2016 and 2022. Radiographic measures included disc angle (DA), SLL, lumbar lordosis (LL), anterior/posterior disc height (ADH/PDH), spondylolisthesis percentage (SP), intervertebral disc degeneration, and paraspinal muscle quality. Surgery-related measures included cage position, screw insertion depth, spondylolisthesis reduction rate, and disc height restoration rate. A change in SLL ≥ 4° indicated increased segmental lumbar lordosis (ISLL), and unincreased segmental lumbar lordosis (UISLL) < 4°. Propensity score matching was employed for a 1:1 match between ISLL and UISLL patients based on age, gender, body mass index, smoking status, and osteoporosis condition.

Results

A total of 192 patients with an average follow-up of 20.9 months were enrolled. Compared to UISLL patients, ISLL patients had significantly lower pre-op DA (6.78° vs. 11.84°), SLL (10.73° vs. 18.24°), LL (42.59° vs. 45.75°), and ADH (10.09 mm vs. 12.21 mm) (all, P < 0.05). ISLL patients were predisposed to more severe intervertebral disc degeneration (P = 0.047) and higher SP (21.30% vs. 19.39%, P = 0.019). The cage was positioned more anteriorly in ISLL patients (67.00% vs. 60.08%, P = 0.000), with more extensive reduction of spondylolisthesis (− 73.70% vs. − 56.16%, P = 0.000) and higher restoration of ADH (33.34% vs. 8.11%, P = 0.000). Multivariate regression showed that lower pre-op SLL (OR 0.750, P = 0.000), more anterior cage position (OR 1.269, P = 0.000), and a greater spondylolisthesis reduction rate (OR 0.965, P = 0.000) significantly impacted SLL restoration.

Conclusions

Pre-op SLL, cage position, and spondylolisthesis reduction rate were identified as significant predictors of SLL restoration after LFS for DLS. Surgeons are advised to meticulously select patients based on pre-op SLL and strive to position the cage more anteriorly while minimizing spondylolisthesis to maximize SLL restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wiltse LL (1962) The etiology of spondylolisthesis. J Bone Joint Surg Am 44-a:539–560

    Article  CAS  PubMed  Google Scholar 

  2. Sengupta DK, Herkowitz HN (2005) Degenerative spondylolisthesis: review of current trends and controversies. Spine (Phila Pa 1976) 30:S71-81. https://doi.org/10.1097/01.brs.0000155579.88537.8e

    Article  PubMed  Google Scholar 

  3. Weinstein JN, Lurie JD, Tosteson TD, Zhao W, Blood EA, Tosteson AN, Birkmeyer N, Herkowitz H, Longley M, Lenke L, Emery S, Hu SS (2009) Surgical compared with nonoperative treatment for lumbar degenerative spondylolisthesis. 4-year results in the Spine patient outcomes research trial (SPORT) randomized and observational cohorts. J Bone Joint Surg Am 91:1295–1304. https://doi.org/10.2106/jbjs.H.00913

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chan AK, Sharma V, Robinson LC, Mummaneni PV (2019) Summary of guidelines for the treatment of lumbar spondylolisthesis. Neurosurg Clin N Am 30:353–364. https://doi.org/10.1016/j.nec.2019.02.009

    Article  PubMed  Google Scholar 

  5. Radovanovic I, Urquhart JC, Ganapathy V, Siddiqi F, Gurr KR, Bailey SI, Bailey CS (2017) Influence of postoperative sagittal balance and spinopelvic parameters on the outcome of patients surgically treated for degenerative lumbar spondylolisthesis. J Neurosurg Spine 26:448–453. https://doi.org/10.3171/2016.9.Spine1680

    Article  PubMed  Google Scholar 

  6. Thornley P, Urquhart JC, Glennie A, Rampersaud R, Fisher C, Abraham E, Charest-Morin R, Dea N, Kwon BK, Manson N, Hall H, Paquette S, Street J, Siddiqi F, Rasoulinejad P, Bailey CS (2023) Functional outcomes correlate with sagittal spinal balance in degenerative lumbar spondylolisthesis surgery. Spine J. https://doi.org/10.1016/j.spinee.2023.06.004

    Article  PubMed  Google Scholar 

  7. Kuhta M, Bošnjak K, Vengust R (2019) Failure to maintain segmental lordosis during TLIF for one-level degenerative spondylolisthesis negatively affects clinical outcome 5 years postoperatively: a prospective cohort of 57 patients. Eur Spine J 28:745–750. https://doi.org/10.1007/s00586-019-05890-w

    Article  PubMed  Google Scholar 

  8. Takahashi Y, Okuda S, Nagamoto Y, Matsumoto T, Sugiura T, Iwasaki M (2019) Effect of segmental lordosis on the clinical outcomes of 2-level posterior lumbar interbody fusion for 2-level degenerative lumbar spondylolisthesis. J Neurosurg Spine. https://doi.org/10.3171/2019.4.Spine181463

    Article  PubMed  Google Scholar 

  9. Okuda S, Nagamoto Y, Takenaka S, Ikuta M, Matsumoto T, Takahashi Y, Furuya M, Iwasaki M (2021) Effect of segmental lordosis on early-onset adjacent-segment disease after posterior lumbar interbody fusion. J Neurosurg Spine 35:454–459. https://doi.org/10.3171/2020.12.Spine201888

    Article  PubMed  Google Scholar 

  10. Meyerding HW (1933) Diagnosis and roentgenologic evidence in spondylolisthesis. Radiology 20:108–120

    Article  Google Scholar 

  11. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32:E708-712. https://doi.org/10.1097/BRS.0b013e31815a59a0

    Article  PubMed  Google Scholar 

  12. Hicks GE, George SZ, Nevitt MA, Cauley JA, Vogt MT (2006) Measurement of lumbar lordosis: inter-rater reliability, minimum detectable change and longitudinal variation. J Spinal Disord Tech 19:501–506. https://doi.org/10.1097/01.bsd.0000210116.94273.ad

    Article  PubMed  Google Scholar 

  13. Ghogawala Z, Dziura J, Butler WE, Dai F, Terrin N, Magge SN, Coumans JV, Harrington JF, Amin-Hanjani S, Schwartz JS, Sonntag VK, Barker FG 2nd, Benzel EC (2016) Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. N Engl J Med 374:1424–1434. https://doi.org/10.1056/NEJMoa1508788

    Article  CAS  PubMed  Google Scholar 

  14. Parker SL, Adogwa O, Paul AR, Anderson WN, Aaronson O, Cheng JS, McGirt MJ (2011) Utility of minimum clinically important difference in assessing pain, disability, and health state after transforaminal lumbar interbody fusion for degenerative lumbar spondylolisthesis. J Neurosurg Spine 14:598–604. https://doi.org/10.3171/2010.12.Spine10472

    Article  PubMed  Google Scholar 

  15. Bae JS, Lee SH, Kim JS, Jung B, Choi G (2010) Adjacent segment degeneration after lumbar interbody fusion with percutaneous pedicle screw fixation for adult low-grade isthmic spondylolisthesis: minimum 3 years of follow-up. Neurosurgery 67:1600–1607. https://doi.org/10.1227/NEU.0b013e3181f91697

    Article  PubMed  Google Scholar 

  16. Cheh G, Bridwell KH, Lenke LG, Buchowski JM, Daubs MD, Kim Y, Baldus C (2007) Adjacent segment disease followinglumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine (Phila Pa 1976) 32:2253–2257. https://doi.org/10.1097/BRS.0b013e31814b2d8e

    Article  PubMed  Google Scholar 

  17. Berlin C, Zang F, Halm H, Quante M (2021) Preoperative lordosis in L4/5 predicts segmental lordosis correction achievable by transforaminal lumbar interbody fusion. Eur Spine J 30:1277–1284. https://doi.org/10.1007/s00586-020-06710-2

    Article  PubMed  Google Scholar 

  18. Liu J, Duan P, Mummaneni PV, Xie R, Li B, Dong Y, Berven S, Chou D (2021) Does transforaminal lumbar interbody fusion induce lordosis or kyphosis? Radiographic evaluation with a minimum 2-year follow-up. J Neurosurg Spine 35:419–426. https://doi.org/10.3171/2020.12.Spine201665

    Article  PubMed  Google Scholar 

  19. Zhang JK, Greenberg JK, Javeed S, Benedict B, Botterbush KS, Dibble CF, Khalifeh JM, Brehm S, Jain D, Dorward I, Santiago P, Molina C, Pennicooke BH, Ray WZ (2023) Predictors of postoperative segmental and overall lumbar lordosis in minimally invasive transforaminal lumbar interbody fusion: a consecutive case series. Glob Spine J. https://doi.org/10.1177/21925682231193610

    Article  Google Scholar 

  20. Alahmari A, Thornley P, Glennie A, Urquhart JC, Al-Jahdali F, Rampersaud R, Fisher C, Siddiqi F, Rasoulinejad P, Bailey CS (2022) Preoperative disc angle is an important predictor of segmental lordosis after degenerative spondylolisthesis fusion. Glob Spine J. https://doi.org/10.1177/21925682221118845

    Article  Google Scholar 

  21. Karamian BA, Levy HA, DiMaria SL, Ju DG, Canseco JA, Yen W, Maheu A, Mangan JJ, Goyal DKC, Radcliff KE, Kaye ID, Rihn JA, Hilibrand AS, Kepler CK, Vaccaro AR, Schroeder GD (2023) Effect of clinical and radiographic degenerative spondylolisthesis classification on patient-reported outcomes and spinopelvic parameters for patients with single-level L4–L5 degenerative spondylolisthesis after lumbar fusion. Clin Spine Surg. https://doi.org/10.1097/bsd.0000000000001461

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yen CP, Beckman JM, Vivas AC, Bach K, Uribe JS (2017) Effects of intradiscal vacuum phenomenon on surgical outcome of lateral interbody fusion for degenerative lumbar disease. J Neurosurg Spine 26:419–425. https://doi.org/10.3171/2016.8.Spine16421

    Article  PubMed  Google Scholar 

  23. You KH, Cho M, Lee JH (2023) Effect of muscularity and fatty infiltration of paraspinal muscles on outcome of lumbar interbody fusion. J Korean Med Sci 38:e151. https://doi.org/10.3346/jkms.2023.38.e151

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shiga Y, Orita S, Inage K, Sato J, Fujimoto K, Kanamoto H, Abe K, Kubota G, Yamauchi K, Eguchi Y, Inoue M, Kinoshita H, Aoki Y, Nakamura J, Matsuura Y, Hynes R, Furuya T, Koda M, Takahashi K, Ohtori S (2017) Evaluation of the location of intervertebral cages during oblique lateral interbody fusion surgery to achieve sagittal correction. Spine Surg Relat Res 1:197–202. https://doi.org/10.22603/ssrr.1.2017-0001

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lian XF, Hou TS, Xu JG, Zeng BF, Zhao J, Liu XK, Zhao C, Li H (2013) Posterior lumbar interbody fusion for aged patients with degenerative spondylolisthesis: is intentional surgical reduction essential? Spine J 13:1183–1189. https://doi.org/10.1016/j.spinee.2013.07.481

    Article  PubMed  Google Scholar 

  26. Cho MS, Seo EM (2021) Efficacy and radiographic analysis of oblique lumbar interbody fusion in treating lumbar degenerative spondylolisthesis with sagittal imbalance. Neurosurg Rev 44:2181–2189. https://doi.org/10.1007/s10143-020-01390-4

    Article  PubMed  Google Scholar 

  27. Liu AF, Guo TC, Chen JX, Yu WJ, Feng HC, Niu PY, Zhai JB (2022) Efficacy and safety of oblique lumbar interbody fusion versus transforaminal lumbar interbody fusion for degenerative lumbar spondylolisthesis: a systematic review and meta-analysis. World Neurosurg 158:e964–e974. https://doi.org/10.1016/j.wneu.2021.11.127

    Article  PubMed  Google Scholar 

  28. Zhou Q, Zhang JX, Zheng YF, Teng Y, Yang HL, Liu H, Liu T (2021) Effects of different pedicle screw insertion depths on sagittal balance of lumbar degenerative spondylolisthesis, a retrospective comparative study. BMC Musculoskelet Disord 22:850. https://doi.org/10.1186/s12891-021-04736-1

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cho W, Cho SK, Wu C (2010) The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br 92:1061–1065. https://doi.org/10.1302/0301-620x.92b8.24237

    Article  CAS  PubMed  Google Scholar 

  30. Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS, Goel VK, Demetropoulos CK, Soo TM (2015) Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech 28:E133-139. https://doi.org/10.1097/bsd.0000000000000178

    Article  PubMed  Google Scholar 

  31. Tian H, Wu A, Guo M, Zhang K, Chen C, Li X, Cheng X, Zhou T, Murray SS, Sun X, Zhao J (2018) Adequate restoration of disc height and segmental lordosis by lumbar interbody fusion decreases adjacent segment degeneration. World Neurosurg 118:e856–e864. https://doi.org/10.1016/j.wneu.2018.07.075

    Article  PubMed  Google Scholar 

  32. Russo AJ, Schopler SA, Stetzner KJ, Shirk T (2021) Minimally invasive transforaminal lumbar interbody fusion with expandable articulating interbody spacers significantly improves radiographic outcomes compared to static interbody spacers. J Spine Surg 7:300–309. https://doi.org/10.21037/jss-20-630

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibao Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Chen, X., Han, D. et al. Radiographic and surgery-related predictive factors for increased segmental lumbar lordosis following lumbar fusion surgery in patients with degenerative lumbar spondylolisthesis. Eur Spine J (2024). https://doi.org/10.1007/s00586-024-08248-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-024-08248-z

Keywords

Navigation