Skip to main content
Log in

Assessing progressive changes in axial plane vertebral deformity in adolescent idiopathic scoliosis using sequential magnetic resonance imaging

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To understand how the axial plane deformity contributes to progression of the three-dimensional spinal deformity of Adolescent Idiopathic Scoliosis (AIS), with a main thoracic curve type, using a series of sequential magnetic resonance images (MRI).

Methods

Twenty-seven AIS patients (at scan 1: mean 12.4 years (± 1.5), mean Cobb angle 29.1°(± 8.8°)) had 3 MRI scans (T4-L1) performed at intervals of mean 0.7 years (± 0.4). The outer profile of the superior and inferior endplates were traced on a reformatted axial image using ImageJ (NIH). Endplate AVR, and intravertebral rotation (IVR), defined as the difference between superior and inferior endplate AVR, was calculated for each vertebral level.

Results

For all patients and scans, the mean AVR was greatest at the curve apex, with AVR diminishing in a caudal and cephalic direction from the apex. At scan 3 the mean apical AVR was 15.1°(± 4.6°) with a mean change in apical AVR between MRI 1 and 3 of 2.7°(± 2.9°). The increase in standing height between MRI 1 and 3 was mean 7.4 cm (± 4.6). Linear regression showed a positive correlation between apical AVR and Cobb angle (R2 = 0.57, P < 0.001), and a positive correlation between apical AVR and rib hump (R2 = 0.54, p < 0.001). The mean change in IVR was greater 3 vertebral levels cephalic and caudal to the apex (1.4°(± 4.1°) and 1.2°(± 2.0°), respectively), compared to the apex (0.4°(± 3.1°)).

Conclusions

AVR increased, during curve progression, most markedly at the curve apex. The greatest IVR was observed at the periapical levels, with the apex by contrast having only a modest degree of rotation, suggesting the periapical vertebral levels of the scoliosis deformity may be a significant driver in the progression of AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kane WJ (1977) Scoliosis prevalence: a call for a statement of terms. Clin Orthop Relat Res 126:43–46. https://doi.org/10.1097/00003086-197707000-00006

    Article  Google Scholar 

  2. Choudhry MN, Ahmad Z, Verma R (2016) Adolescent idiopathic scoliosis. Open Orthop J 10(1):143–154. https://doi.org/10.2174/1874325001610010143

    Article  PubMed  PubMed Central  Google Scholar 

  3. Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7(1):3–9. https://doi.org/10.1007/s11832-012-0457-4

    Article  PubMed  Google Scholar 

  4. Huitema G, W Pc, VR L, Kleijnen J, S CI (2014) Anterior versus posterior spinal correction and fusion for adolescent idiopathic scoliosis Protocol. Cochrane Rev. https://doi.org/10.1002/14651858.CD011280

    Article  Google Scholar 

  5. Grivas TB, Samelis P, Chadziargiropoulos T, Polyzois B (2014) Study of the rib cage deformity in children with 10 degrees-20 degrees of cobb angle late onset idiopathic scoliosis, using rib-vertebra angles. Stud Health Technol Inform 2002(91):20–24. https://doi.org/10.3233/978-1-60750-935-6-20

    Article  Google Scholar 

  6. Machida M, Weinstein SL, Dubousset J (eds) (2018) Pathogenesis of idiopathic scoliosis. Springer, Japan. ISBN 978-4-431-56541-3. https://doi.org/10.1007/978-4-431-56541-3

    Book  Google Scholar 

  7. Labrom FR, Izatt MT, Claus AP, Little JP (2021) Adolescent idiopathic scoliosis 3D vertebral morphology, progression and nomenclature: a current concepts review. Eur Spine J 30(7):1823–1834. https://doi.org/10.1007/s00586-021-06842-z

    Article  PubMed  Google Scholar 

  8. Reynolds LA, Izatt MT, Huang EM et al (2017) Is vertebral rotation correction maintained after thoracoscopic anterior scoliosis surgery? A low-dose computed tomography study. Scoliosis Spinal Disord. https://doi.org/10.1186/s13013-017-0131-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schlösser TPC, Van Stralen M, Brink RC et al (2014) Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000000467

    Article  PubMed  Google Scholar 

  10. Birchall D, Hughes DG, Hindle J, Robinson L, Williamson JB (1997) Measurement of vertebral rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging. Spine (Phila Pa 1976) 22(20):2403–2407. https://doi.org/10.1097/00007632-199710150-00016

    Article  CAS  PubMed  Google Scholar 

  11. Jankowski PP, Yaszay B, Cidambi KR, Bartley CE, Bastrom TP, Newton PO (2018) The relationship between apical vertebral rotation and truncal rotation in adolescent idiopathic scoliosis using 3D reconstructions. Spine Deform 6(3):213–219. https://doi.org/10.1016/j.jspd.2017.10.003

    Article  PubMed  Google Scholar 

  12. Newell N, Grant CA, Keenan BE, Izatt MT, Pearcy MJ, Adam CJ (2016) Quantifying progressive anterior overgrowth in the thoracic vertebrae of adolescent idiopathic scoliosis patients: a sequential magnetic resonance imaging study. Spine (Phila Pa 1976) 41(7):E382–E387. https://doi.org/10.1097/BRS.0000000000001265

    Article  PubMed  Google Scholar 

  13. Keenan BE, Izatt MT, Askin GN et al (2017) Sequential magnetic resonance imaging reveals individual level deformities of vertebrae and discs in the growing scoliotic spine. Spine Deform 5(3):197–207. https://doi.org/10.1016/j.jspd.2016.10.002

    Article  PubMed  Google Scholar 

  14. Davis CM, Grant CA, Izatt MT et al (2020) Characterization of progressive changes in pedicle morphometry and neurovascular anatomy during growth in adolescent idiopathic scoliosis versus adolescents without scoliosis. Spine Deform 8(6):1193–1204. https://doi.org/10.1007/s43390-020-00160-y

    Article  PubMed  Google Scholar 

  15. Labrom FR, Izatt MT, Contractor P et al (2020) Sequential MRI reveals vertebral body wedging significantly contributes to coronal plane deformity progression in adolescent idiopathic scoliosis during growth. Spine Deform 8(5):901–910. https://doi.org/10.1007/s43390-020-00138-w

    Article  PubMed  Google Scholar 

  16. Weinstein SL, Dolan LA, Wright JG, Dobbs MB (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369(16):1512–1521. https://doi.org/10.1056/nejmoa1307337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adam CJ, Askin GN (2006) Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine (Phila Pa 1976) 31(3):80–83. https://doi.org/10.1097/01.brs.0000197653.64796.9d

    Article  Google Scholar 

  18. Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47(8):931–936. https://doi.org/10.1016/j.ijnurstu.2009.10.001

    Article  Google Scholar 

  19. Brink RC, Homans JF, Schlösser TPC et al (2019) CT-based study of vertebral and intravertebral rotation in right thoracic adolescent idiopathic scoliosis. Eur Spine J 28(12):3044–3052. https://doi.org/10.1007/s00586-019-06138-3

    Article  PubMed  Google Scholar 

  20. Kouwenhoven JWM, Vincken KL, Bartels LW, Castelein RM (2006) Analysis of preexistent vertebral rotation in the normal spine. Spine (Phila Pa 1976) 31(13):1467–1472. https://doi.org/10.1097/01.brs.0000219938.14686.b3

    Article  PubMed  Google Scholar 

  21. Ni H, Zhu X, He S et al (2010) An increased kyphosis of the thoracolumbar junction is correlated to more axial vertebral rotation in thoracolumbar/lumbar adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 35(23):1334–1338. https://doi.org/10.1097/BRS.0b013e3181e5370b

    Article  Google Scholar 

  22. Villemure I, Aubin CE, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine (Phila Pa 1976) 26(20):2244–2250. https://doi.org/10.1097/00007632-200110150-00016

    Article  CAS  PubMed  Google Scholar 

  23. Adam CJ, Askin GN, Pearcy MJ (2008) Gravity-induced torque and intravertebral rotation in idiopathic scoliosis. Spine (Phila Pa 1976) 33(2):30–37. https://doi.org/10.1097/BRS.0b013e318160460f

    Article  Google Scholar 

  24. Marchesi DG, Transfeldt EE, Bradford DS, Heithoff KB (1992) Changes in vertebral rotation after harrington and luque instrumentation for idiopathic scoliosis. Spine (Phila Pa 1976) 17(7):775–780. https://doi.org/10.1097/00007632-199207000-00009

    Article  CAS  PubMed  Google Scholar 

  25. Brink RC, Schlösser TPC, Colo D et al (2017) Asymmetry of the vertebral body and pedicles in the true transverse plane in adolescent idiopathic scoliosis: a CT-based study. Spine Deform 5(1):37–45. https://doi.org/10.1016/j.jspd.2016.08.006

    Article  PubMed  Google Scholar 

Download references

Funding

No funds were received in support of this work. Partial postgraduate scholarship funding for the first author was provided by Queensland X-Ray Ltd (Australia) and Children’s Health Queensland, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel T. Sowula.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Ethical approval

Ethical approvals were obtained from the Mater Human Research Ethics Committee (HREC) (14/88/AM03), the Queensland University of Technology HREC (1200000281) and the Children’s Health Queensland HREC (SSA/14/QRCH/411).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowula, P.T., Izatt, M.T., Labrom, R.D. et al. Assessing progressive changes in axial plane vertebral deformity in adolescent idiopathic scoliosis using sequential magnetic resonance imaging. Eur Spine J 33, 663–672 (2024). https://doi.org/10.1007/s00586-023-08004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-08004-9

Keywords

Navigation