Skip to main content
Log in

Diet and risk of low back pain: a Mendelian randomization analysis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Previous epidemiological and other studies have shown an association between diet and low back pain (LBP). This study aimed to investigate the causal relationship between diet and LBP using a Mendelian randomization (MR) approach.

Methods

The three main methods in this study were weighted median, MR-Egger, and inverse variance weighting (IVW). We utilized MR-PRESSO to eliminate abnormal SNPs. Additionally, tests for pleiotropy and heterogeneity were conducted. Utilizing IVW and MR-Egger’s Cochran’s Q test, heterogeneity was evaluated. MR-Egger intercepts were used in pleiotropy tests. A leave-one-out analysis was also used to evaluate the stability of the study’s findings.

Results

The frequency of alcohol intake was associated with an increased risk of LBP. Increased processed meat intake, dried fruit intake, cereal intake, and tea intake were causally associated with a decreased risk of LBP (alcohol intake frequency: odds ratio (OR) = 1.28; 95% confidence interval (CI), 1.11–1.47; P = 0.0006; processed meat intake: OR = 0.60, 95%CI 0.39–0.92, P = 0.019; dried fruit intake: OR = 0.43, 95%CI 0.29–0.66, P = 0.00008; cereal intake: OR = 0.62, 95%CI 0.42–0.92, P = 0.018; tea intake: OR = 0.75, 95%CI 0.58–0.97, P = 0.029). Heterogeneity and pleiotropy were also not found in the sensitivity analysis. The leave-one-out analysis also showed more robust results. Other dietary intakes were not causally associated with LBP.

Conclusions

This two-sample MR study found that frequency of alcohol intake was associated with an increased risk of LBP, and intake of processed meat, dried fruit, cereals, and tea was associated with a decreased risk of LBP. Moreover, no causal relationship was found with LBP in the other 13 diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data used in the current study are publicly available GWAS data. And the pooled data used and analyzed in the present study are available from the article or supplemental materials.

References

  1. Buchbinder R, van Tulder M, Öberg B, Costa LM, Woolf A, Schoene M, Croft P (2018) Low back pain: a call for action. Lancet 391:2384–2388. https://doi.org/10.1016/s0140-6736(18)30488-4

    Article  PubMed  Google Scholar 

  2. Dincer F, Kesikburun S, Ozdemir O, Yaşar E, Munoz S, Valero R, Juocevidius A, Quittan M, Lukmann A, Winkelman A, Vetra A, Gerdle B, Kiekens C, Branco CA, Smith E, Delargy M, Ilieva E, Boyer FC, Grubisic F, Damjan H, Krüger L, Kankaanpää M, Dimitrova EN, Delic M, Lazovic M, Tomic N, Roussos N, Michail X, Boldrini P, Negrini S, Takac P, Tederko P, Angerova Y (2019) The approach of physiatrists to low back pain across Europe. J Back Musculoskelet Rehabil 32:131–139. https://doi.org/10.3233/bmr-171001

    Article  PubMed  Google Scholar 

  3. Ärnlöv J, Larsson A (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:743–800. https://doi.org/10.1016/s0140-6736(15)60692-4

    Article  Google Scholar 

  4. Urits I, Burshtein A, Sharma M, Testa L, Gold PA, Orhurhu V, Viswanath O, Jones MR, Sidransky MA, Spektor B, Kaye AD (2019) Low back pain, a comprehensive review: pathophysiology, diagnosis, and treatment. Curr Pain Headache Rep 23:23. https://doi.org/10.1007/s11916-019-0757-1

    Article  PubMed  Google Scholar 

  5. Knezevic NN, Candido KD, Vlaeyen JWS, Van Zundert J, Cohen SP (2021) Low back pain. Lancet 398:78–92. https://doi.org/10.1016/s0140-6736(21)00733-9

    Article  PubMed  Google Scholar 

  6. Nieminen LK, Pyysalo LM, Kankaanpää MJ (2021) Prognostic factors for pain chronicity in low back pain: a systematic review. Pain Rep 6:e919. https://doi.org/10.1097/pr9.0000000000000919

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zick SM, Murphy SL, Colacino J (2020) Association of chronic spinal pain with diet quality. Pain Rep 5:e837. https://doi.org/10.1097/pr9.0000000000000837

    Article  PubMed  PubMed Central  Google Scholar 

  8. Du C, Smith A, Avalos M, South S, Crabtree K, Wang W, Kwon YH, Vijayagopal P, Juma S (2019) Blueberries improve pain, gait performance, and inflammation in individuals with symptomatic knee osteoarthritis. Nutrients. https://doi.org/10.3390/nu11020290

    Article  PubMed  PubMed Central  Google Scholar 

  9. Essouiri J, Harzy T, Benaicha N, Errasfa M, Abourazzak FE (2017) Effectiveness of argan oil consumption on knee osteoarthritis symptoms: a randomized controlled clinical trial. Curr Rheumatol Rev 13:231–235. https://doi.org/10.2174/1573397113666170710123031

    Article  CAS  PubMed  Google Scholar 

  10. Rondanelli M, Faliva MA, Miccono A, Naso M, Nichetti M, Riva A, Guerriero F, De Gregori M, Peroni G, Perna S (2018) Food pyramid for subjects with chronic pain: foods and dietary constituents as anti-inflammatory and antioxidant agents. Nutr Res Rev 31:131–151. https://doi.org/10.1017/s0954422417000270

    Article  CAS  PubMed  Google Scholar 

  11. Ziegler A, Pahlke F, König IR (2008) Comments on ‘Mendelian randomization: using genes as instruments for making causal inferences in epidemiology’ by Debbie A. Lawlor, R. M. Harbord, J. A. Sterne, N. Timpson and G. Davey Smith, Statistics in Medicine, https://doi.org/10.1002/sim.3034. Stat Med 27:2974–2976; author reply 2976–2978. https://doi.org/10.1002/sim.3213

  12. Holmes MV, Ala-Korpela M, Smith GD (2017) Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14:577–590. https://doi.org/10.1038/nrcardio.2017.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD (2017) Recent developments in Mendelian randomization studies. Curr Epidemiol Rep 4:330–345. https://doi.org/10.1007/s40471-017-0128-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318:1925–1926. https://doi.org/10.1001/jama.2017.17219

    Article  PubMed  Google Scholar 

  15. Huang J, Xie ZF (2023) Dried fruit intake causally protects against low back pain: a Mendelian randomization study. Front Nutr 10:1027481. https://doi.org/10.3389/fnut.2023.1027481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan H, Jin X, Zhang C, Zhu C, He Y, Du X, Feng G (2023) Associations between diet and incidence risk of lung cancer: a Mendelian randomization study. Front Nutr 10:1149317. https://doi.org/10.3389/fnut.2023.1149317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang W, Yang Y, He L, Zhang M, Sun S, Wang F, Han B (2023) Dietary factors and risk for asthma: a Mendelian randomization analysis. Front Immunol 14:1126457. https://doi.org/10.3389/fimmu.2023.1126457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pierce BL, Ahsan H, Vanderweele TJ (2011) Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol 40:740–752. https://doi.org/10.1093/ije/dyq151

    Article  PubMed  Google Scholar 

  19. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89-98. https://doi.org/10.1093/hmg/ddu328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo G, Yao Y, Tao J, Wang T, Yan M (2022) Causal association of sleep disturbances and low back pain: a bidirectional two-sample Mendelian randomization study. Front Neurosci 16:1074605. https://doi.org/10.3389/fnins.2022.1074605

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao RC, Sang N, Jia CZ, Zhang MY, Li BH, Wei M, Wu GC (2022) Association between sleep traits and rheumatoid arthritis: a Mendelian randomization study. Front Public Health 10:940161. https://doi.org/10.3389/fpubh.2022.940161

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen D, Zhang Y, Yidilisi A, Xu Y, Dong Q, Jiang J (2022) Causal associations between circulating adipokines and cardiovascular disease: a Mendelian randomization study. J Clin Endocrinol Metab 107:e2572–e2580. https://doi.org/10.1210/clinem/dgac048

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40:755–764. https://doi.org/10.1093/ije/dyr036

    Article  PubMed  Google Scholar 

  28. Borges MC, Haycock PC, Zheng J, Hemani G, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA (2022) Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med 20:210. https://doi.org/10.1186/s12916-022-02399-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shu P, Ji L, Ping Z, Sun Z, Liu W (2022) Association of insomnia and daytime sleepiness with low back pain: a bidirectional Mendelian randomization analysis. Front Genet 13:938334. https://doi.org/10.3389/fgene.2022.938334

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang Y, Wu J, Xu M, Zhu T, Sun Y, Chen H, Wu L, Chen C (2022) Causal associations of iron status and back pain risk: a Mendelian randomization study. Front Nutr 9:923590. https://doi.org/10.3389/fnut.2022.923590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou J, Mi J, Peng Y, Han H, Liu Z (2021) Causal associations of obesity with the intervertebral degeneration, low back pain, and sciatica: a two-sample mendelian randomization study. Front Endocrinol (Lausanne) 12:740200. https://doi.org/10.3389/fendo.2021.740200

    Article  PubMed  Google Scholar 

  32. Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, Mullany EC, Abate KH, Abbafati C, Abebe Z, Afarideh M (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 393:1958–1972. https://doi.org/10.1016/s0140-6736(19)30041-8

    Article  Google Scholar 

  33. Ferreira PH, Pinheiro MB, Machado GC, Ferreira ML (2013) Is alcohol intake associated with low back pain? A systematic review of observational studies. Man Ther 18:183–190. https://doi.org/10.1016/j.math.2012.10.007

    Article  PubMed  Google Scholar 

  34. Mendonça CR, Noll M, Castro MCR, Silveira EA (2020) Effects of nutritional interventions in the control of musculoskeletal pain: an integrative review. Nutrients 12:3075. https://doi.org/10.3390/nu12103075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teodorczyk-Injeyan JA, Triano JJ, Injeyan HS (2019) Nonspecific low back pain: inflammatory profiles of patients with acute and chronic pain. Clin J Pain 35:818–825. https://doi.org/10.1097/ajp.0000000000000745

    Article  PubMed  PubMed Central  Google Scholar 

  36. Philpot U, Johnson MI (2019) Diet therapy in the management of chronic pain: better diet less pain? Pain Manag 9:335–338. https://doi.org/10.2217/pmt-2019-0014

    Article  PubMed  Google Scholar 

  37. Calle MC, Andersen CJ (2019) Assessment of dietary patterns represents a potential, yet variable, measure of inflammatory status: a review and update. Dis Markers 2019:3102870. https://doi.org/10.1155/2019/3102870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giromini C, Givens DI (2022) Benefits and risks associated with meat consumption during key life processes and in relation to the risk of chronic diseases. Foods 11:2063. https://doi.org/10.3390/foods11142063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dewell A, Weidner G, Sumner MD, Chi CS, Ornish D (2008) A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors. J Am Diet Assoc 108:347–356. https://doi.org/10.1016/j.jada.2007.10.044

    Article  CAS  PubMed  Google Scholar 

  40. Towery P, Guffey JS, Doerflein C, Stroup K, Saucedo S, Taylor J (2018) Chronic musculoskeletal pain and function improve with a plant-based diet. Complement Ther Med 40:64–69. https://doi.org/10.1016/j.ctim.2018.08.001

    Article  PubMed  Google Scholar 

  41. Pimentel GD, Micheletti TO, Pace F, Rosa JC, Santos RV, Lira FS (2012) Gut-central nervous system axis is a target for nutritional therapies. Nutr J 11:22. https://doi.org/10.1186/1475-2891-11-22

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our data are taken from the publicly available GWAS database. We thank the genetics consortiums for publicly making the GWAS summary data available.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SSL, XFL, XMD, and CW were involved in study design, data collection, and statistical analysis. SSL, XFL, RL, and JHD were involved in writing—original draft. SSL, XFL, XMD, RL, JHD, and CW were involved in writing—review and editing.

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Conflict of interest

None of the authors has any conflicts of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lv, X., Deng, X. et al. Diet and risk of low back pain: a Mendelian randomization analysis. Eur Spine J 33, 496–504 (2024). https://doi.org/10.1007/s00586-023-07970-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07970-4

Keywords

Navigation