Skip to main content

Advertisement

Log in

Early cement augmentation may be a good treatment option for pain relief for osteoporotic compression fractures: a systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The incidence of osteoporotic compression fractures (VCFs) have been rising over the past decades. Presently, vertebral cement augmentation procedures such as balloon kyphoplasty and vertebroplasty are common treatments allowing pain relief and functional recovery. However, there is controversy on whether different timeframes for cement augmentation affects clinical outcomes. Hence, this study aimed to compare pain relief and complication rates between early versus late cement augmentation.

Methods

A comprehensive systematic review of PubMed, EMBASE, Scopus and Cochrane Library was conducted, identifying studies that compared early versus late cement augmentation for VCFs. As the definitions of "early" and "late" phases across studies are heterogenous, we established the cut-off between early and late phase as intervals to accommodate as many studies as possible for analysis. We conducted two separate analyses with different cut-off intervals and included studies that reported interventions within these respective time intervals. In analysis 1, we included studies which grouped patients into “early” and “late” group based on a cut-off time frame of 2–4 weeks. On the other hand, in analysis 2, we included studies which grouped patients into “early” and “late” groups based on a cut-off time frame of 6–8 weeks. Meta-analysis was conducted via random-effect models, comparing outcomes of interest between early and late groups.

Results

Eleven studies were included. The total cohort size was 712 and 775 patients in analysis 1 and 2 respectively. Mean follow-up was 12.9 ± 3.7 months and 11 ± 0.6 months respectively. VAS change at final follow-up was significantly greater in the early group for both analyses. (MD = − 0.66, p = 0.01; and MD = − 1.18, p < 0.005 respectively). There was no significant difference in post-operative absolute VAS score, number of cement leakage, number of adjacent compression fractures and local kyphotic angle, for both analyses. Patients in both groups experienced reductions in VAS score that exceeded the minimum clinically important difference.

Conclusion

Both early and late timeframes for cement augmentation offered significant improvement in pain relief, with similar post-operative absolute pain score, kyphotic angle, cement leakage and adjacent vertebral fractures. Early surgery may offer substantial pain relief in patients presenting with pain as early as < 2–4 weeks of VCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanis JA, Cooper C, Rizzoli R, Reginster JY, on behalf of the Scientific Advisory Board of the European Society for C, Economic Aspects of O, the Committees of Scientific A, National Societies of the International Osteoporosis F (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  PubMed  Google Scholar 

  2. Kutsal FY, Ergin Ergani GO (2021) Vertebral compression fractures: still an unpredictable aspect of osteoporosis. Turk J Med Sci 51:393–399. https://doi.org/10.3906/sag-2005-315

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderson PA, Froyshteter AB, Tontz WL Jr (2013) Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J Bone Miner Res 28:372–382. https://doi.org/10.1002/jbmr.1762

    Article  PubMed  Google Scholar 

  4. Beall D, Lorio MP, Yun BM, Runa MJ, Ong KL, Warner CB (2018) Review of vertebral augmentation: an updated meta-analysis of the effectiveness. Int J Spine Surg 12:295–321. https://doi.org/10.14444/5036

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flug J, Hanford A, Ortiz O (2013) Vertebral augmentation versus conservative therapy for emergently admitted vertebral compression deformities: an economic analysis. Pain Physician 16:441–445

    Article  PubMed  Google Scholar 

  6. Rousing R, Andersen MO, Jespersen SM, Thomsen K, Lauritsen J (2009) Percutaneous vertebroplasty compared to conservative treatment in patients with painful acute or subacute osteoporotic vertebral fractures: three-months follow-up in a clinical randomized study. Spine (Phila Pa 1976) 34:1349–1354. https://doi.org/10.1097/BRS.0b013e3181a4e628

    Article  PubMed  Google Scholar 

  7. Firanescu CE, de Vries J, Lodder P, Venmans A, Schoemaker MC, Smeet AJ, Donga E, Juttmann JR, Klazen CAH, Elgersma OEH, Jansen FH, Tielbeek AV, Boukrab I, Schonenberg K, van Rooij WJJ, Hirsch JA, Lohle PNM (2018) Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): randomised sham controlled clinical trial. BMJ 361:k1551. https://doi.org/10.1136/bmj.k1551

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, Venmans A, van Rooij WJ, Schoemaker MC, Juttmann JR, Lo TH, Verhaar HJ, van der Graaf Y, van Everdingen KJ, Muller AF, Elgersma OE, Halkema DR, Fransen H, Janssens X, Buskens E, Mali WP (2010) Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet 376:1085–1092. https://doi.org/10.1016/s0140-6736(10)60954-3

    Article  PubMed  Google Scholar 

  9. Son S, Lee SG, Kim WK, Park CW, Yoo CJ (2014) Early Vertebroplasty versus delayed vertebroplasty for acute osteoporotic compression fracture: are the results of the two surgical strategies the same? J Korean Neurosurg Soc 56:211–217. https://doi.org/10.3340/jkns.2014.56.3.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papanastassiou ID, Filis A, Aghayev K, Kokkalis ZT, Gerochristou MA, Vrionis FD (2014) Adverse prognostic factors and optimal intervention time for kyphoplasty/vertebroplasty in osteoporotic fractures. Biomed Res Int 204:925683. https://doi.org/10.1155/2014/925683

    Article  Google Scholar 

  11. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mourad Ouzzani HH, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev. https://doi.org/10.1186/s13643-016-0384-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park HT, Lee CB, Ha JH, Choi SJ, Kim MS, Ha JM (2010) Results of kyphoplasty according to the operative timing. Curr Orthop Pract 21:489–493

    Article  Google Scholar 

  14. Rad AE, Kallmes DF (2011) Correlation between preoperative pain duration and percutaneous vertebroplasty outcome. AJNR Am J Neuroradiol 32:1842–1845. https://doi.org/10.3174/ajnr.A2617

    Article  PubMed  PubMed Central  Google Scholar 

  15. Services USDoHaH, Administration FaD, Health CfDaR (2004) Clinical Trial Considerations: vertebral augmentation devices to treat spinal insufficiency fractures—Guidance for Industry and FDA Staff

  16. Lo CK-L, Mertz D, Loeb M (2014) Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol 14:45. https://doi.org/10.1186/1471-2288-14-45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Higgins JPT GSe (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]

  18. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guan H, Yang H, Mei X, Liu T, Guo J (2012) Early or delayed operation, which is more optimal for kyphoplasty? A retrospective study on cement leakage during kyphoplasty. Injury 43:1698–1703. https://doi.org/10.1016/j.injury.2012.06.008

    Article  PubMed  Google Scholar 

  21. Minamide A, Maeda T, Yamada H, Murakami K, Okada M, Enyo Y, Nakagawa Y, Iwasaki H, Tsutsui S, Takami M, Nagata K, Hashizume H, Yukawa Y, Schoenfeld AJ, Simpson AK (2018) Early versus delayed kyphoplasty for thoracolumbar osteoporotic vertebral fractures: the effect of timing on clinical and radiographic outcomes and subsequent compression fractures. Clin Neurol Neurosurg 173:176–181. https://doi.org/10.1016/j.clineuro.2018.07.019

    Article  PubMed  Google Scholar 

  22. Oh GS, Kim HS, Ju CI, Kim SW, Lee SM, Shin H (2010) Comparison of the results of balloon kyphoplasty performed at different times after injury. J Korean Neurosurg Soc 47:199–202. https://doi.org/10.3340/jkns.2010.47.3.199

    Article  PubMed  PubMed Central  Google Scholar 

  23. Palmowski Y, Balmer S, Bürger J, Schömig F, Hu Z, Pumberger M (2020) Influence of operative timing on the early post-operative radiological and clinical outcome after kyphoplasty. Eur Spine J 29:2560–2567. https://doi.org/10.1007/s00586-020-06491-8

    Article  PubMed  Google Scholar 

  24. Takahashi S, Hoshino M, Terai H, Toyoda H, Suzuki A, Tamai K, Watanabe K, Tsujio T, Yasuda H, Kono H, Sasaoka R, Dohzono S, Hayashi K, Ohyama S, Hori Y, Nakamura H (2018) Differences in short-term clinical and radiological outcomes depending on timing of balloon kyphoplasty for painful osteoporotic vertebral fracture. J Orthop Sci 23:51–56. https://doi.org/10.1016/j.jos.2017.09.019

    Article  PubMed  Google Scholar 

  25. Yang CC, Chien JT, Tsai TY, Yeh KT, Lee RP, Wu WT (2018) Earlier vertebroplasty for osteoporotic thoracolumbar compression fracture may minimize the subsequent development of adjacent fractures: a retrospective study. Pain Physician 21:E483-e491

    PubMed  Google Scholar 

  26. Yu SW, Lee PC, Ma CH, Chuang TY, Chen YJ (2004) Vertebroplasty for the treatment of osteoporotic compression spinal fracture: comparison of remedial action at different stages of injury. J Trauma 56:629–632. https://doi.org/10.1097/01.ta.0000053471.73514.2e

    Article  PubMed  Google Scholar 

  27. Zhou X, Meng X, Zhu H, Zhu Y, Yuan W (2019) Early versus late percutaneous kyphoplasty for treating osteoporotic vertebral compression fracture: a retrospective study. Clin Neurol Neurosurg 180:101–105. https://doi.org/10.1016/j.clineuro.2019.03.029

    Article  PubMed  Google Scholar 

  28. Cazzato RL, Bellone T, Scardapane M, De Marini P, Autrusseau PA, Auloge P, Garnon J, Jennings JW, Gangi A (2021) Vertebral augmentation reduces the 12-month mortality and morbidity in patients with osteoporotic vertebral compression fractures. Eur Radiol 31:8246–8255. https://doi.org/10.1007/s00330-021-07985-9

    Article  PubMed  Google Scholar 

  29. Alexandru D, So W (2012) Evaluation and management of vertebral compression fractures. Perm J 16:46–51. https://doi.org/10.7812/tpp/12-037

    Article  PubMed  PubMed Central  Google Scholar 

  30. Prost S, Pesenti S, Fuentes S, Tropiano P, Blondel B (2021) Treatment of osteoporotic vertebral fractures. Orthop Traumatol Surg Res 107:102779. https://doi.org/10.1016/j.otsr.2020.102779

    Article  PubMed  Google Scholar 

  31. Farrar JT, Young JP, LaMoreaux L, Werth JL, Poole MR (2001) Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 94:149–158. https://doi.org/10.1016/s0304-3959(01)00349-9

    Article  PubMed  Google Scholar 

  32. Baroud G, Bohner M (2006) Biomechanical impact of vertebroplasty. Joint Bone Spine 73:144–150. https://doi.org/10.1016/j.jbspin.2005.02.004

    Article  PubMed  Google Scholar 

  33. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine (Phila Pa 1976) 26:1537–1541. https://doi.org/10.1097/00007632-200107150-00007

    Article  CAS  PubMed  Google Scholar 

  34. Zhao G, Liu X, Li F (2016) Balloon kyphoplasty versus percutaneous vertebroplasty for treatment of osteoporotic vertebral compression fractures (OVCFs). Osteoporos Int 27:2823–2834. https://doi.org/10.1007/s00198-016-3610-y

    Article  CAS  PubMed  Google Scholar 

  35. Lee JH, Kwon JT, Kim YB, Suk JS (2007) Segmental deformity correction after balloon kyphoplasty in the osteoporotic vertebral compression fracture. J Korean Neurosurg Soc 42:371–376. https://doi.org/10.3340/jkns.2007.42.5.371

    Article  PubMed  PubMed Central  Google Scholar 

  36. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, Graves S, Staples MP, Murphy B (2009) A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 361:557–568. https://doi.org/10.1056/NEJMoa0900429

    Article  CAS  PubMed  Google Scholar 

  37. Lovi A, Teli M, Ortolina A, Costa F, Fornari M, Brayda-Bruno M (2009) Vertebroplasty and kyphoplasty: complementary techniques for the treatment of painful osteoporotic vertebral compression fractures. A prospective non-randomised study on 154 patients. Eur Spine J 18 Suppl 1:95–101. https://doi.org/10.1007/s00586-009-0986-9

    Article  PubMed  Google Scholar 

  38. Yang H, Liu H, Wang S, Wu K, Meng B, Liu T (2016) Review of percutaneous kyphoplasty in China. Spine (Phila Pa 1976) 41 Suppl 19:B52–B58. https://doi.org/10.1097/brs.0000000000001804

    Article  PubMed  Google Scholar 

  39. Taylor RS, Taylor RJ, Fritzell P (2006) Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: a comparative systematic review of efficacy and safety. Spine 31:2747–2755

    Article  PubMed  Google Scholar 

  40. Chen W, Xie W, Xiao Z, Chen H, Jin D, Ding J (2019) Incidence of cement leakage between unilateral and bilateral percutaneous vertebral augmentation for osteoporotic vertebral compression fractures: a meta-analysis of randomized controlled trials. World Neurosurg 122:342–348. https://doi.org/10.1016/j.wneu.2018.10.143

    Article  PubMed  Google Scholar 

  41. Feng H, Huang P, Zhang X, Zheng G, Wang Y (2015) Unilateral versus bilateral percutaneous kyphoplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis of RCTs. J Orthop Res 33:1713–1723. https://doi.org/10.1002/jor.22957

    Article  PubMed  Google Scholar 

  42. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323. https://doi.org/10.1001/jama.285.3.320

    Article  CAS  PubMed  Google Scholar 

  43. Fribourg D, Tang C, Sra P, Delamarter R, Bae H (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine (Phila Pa 1976) 29:2270–2276; discussion 2277. https://doi.org/10.1097/01.brs.0000142469.41565.2a

  44. Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84:748–752. https://doi.org/10.1302/0301-620x.84b5.11841

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto Y, Murakami H, Demura S, Kato S, Yoshioka K, Hayashi H, Sakamoto J, Kawahara N, Tsuchiya H (2015) The effect of kyphotic deformity because of vertebral fracture: a finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model. Spine J 15:713–720. https://doi.org/10.1016/j.spinee.2014.11.019

    Article  PubMed  Google Scholar 

  46. Eichler MC, Spross C, Ewers A, Mayer R, Külling FA (2016) Prophylactic adjacent-segment vertebroplasty following kyphoplasty for a single osteoporotic vertebral fracture and the risk of adjacent fractures: a retrospective study and clinical experience. J Neurosurg Spine 25:528–534. https://doi.org/10.3171/2016.2.Spine15907

    Article  PubMed  Google Scholar 

  47. Trout AT, Kallmes DF, Kaufmann TJ (2006) New fractures after vertebroplasty: adjacent fractures occur significantly sooner. Am J Neuroradiol 27:217

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hwee Weng DH, Jun HT, Chuen ST, Ming BTH, Huh BLP, Hwan TH (2015) Subsequent vertebral fractures post cement augmentation of the thoracolumbar spine: does it correlate with level-specific bone mineral density scores? Spine 40:1903–1909. https://doi.org/10.1097/brs.0000000000001066

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Design: SS, MY, TJH, DH, Acquisition of Data: MY, SS, Analysis and Interpretation of Data: SS, MY, TJH, Writing—original draft: SS, MY, TJH, Writing—review and editing: SS, MY, TJH, DH.

Corresponding author

Correspondence to Hwee Weng Dennis Hey.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not Applicable.

Informed consent

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1024 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seah, S.J., Yeo, M.H., Tan, JH. et al. Early cement augmentation may be a good treatment option for pain relief for osteoporotic compression fractures: a systematic review and meta-analysis. Eur Spine J 32, 1751–1762 (2023). https://doi.org/10.1007/s00586-023-07658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07658-9

Keywords

Navigation