Skip to main content

Advertisement

Log in

Electrophysiological evidence of diabetes’ impacts on central conduction recoveries in degenerative cervical myelopathy after surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Objectives

To assess the impact of diabetes mellitus (DM) on the postoperative motor and somatosensory functional recoveries of degenerative cervical myelopathy (DCM) patients.

Methods

Motor and somatosensory evoked potentials (MEP and SSEPs) and modified Japanese Orthopedic Association (mJOA) scores were recorded in 27 diabetic (DCM-DM group) and 38 non-diabetic DCM patients (DCM group) before and 1 year after surgery. The central motor (CMCT) and somatosensory (CSCT) conduction time were recorded to evaluate the conductive functions of the spinal cord.

Results

The mJOA scores, CMCT and CSCT improved (t test, p < 0.05) in both of the DCM-DM and DCM groups 1 year after surgery. The mJOA recovery rate (RR) and CSCT recovery ratio were significantly worse (t test, p < 0.05) in the DCM-DM group compared to the DCM group. DM proved to be a significant independent risk factor for poor CSCT recovery (OR = 4.52, 95% CI 2.32–7.12) after adjusting for possible confounding factors. In DCM-DM group, CSCT recovery ratio was also correlated with preoperative HbA1 level (R =  − 0.55, p = 0.003). Furthermore, DM duration longer than 10 years and insulin dependence were risk factors for lower mJOA, CMCT and CSCT recoveries among all DCM-DM patients (t test, p < 0.05).

Conclusions

DM may directly hinders spinal cord conduction recovery in DCM patients after surgery. Corticospinal tract impairments are similar between DCM and DCM-DM patients, but significantly worsened in chronic or insulin-dependent DM patients. The dorsal column is more sensitively affected in all DCM-DM patients. Deeper investigation into the mechanisms and neural regeneration strategies is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Badhiwala JH, Ahuja CS, Akbar MA, Witiw CD, Nassiri F, Furlan JC, Curt A, Wilson JR, Fehlings MG (2020) Degenerative cervical myelopathy—update and future directions. Nat Rev Neurol 16:108–124. https://doi.org/10.1038/s41582-019-0303-0

    Article  PubMed  Google Scholar 

  2. Kusin DJ, Ahn UM, Ahn NU (2016) The influence of diabetes on surgical outcomes in cervical myelopathy. Spine (Phila Pa 1976) 41:1436–1440. https://doi.org/10.1097/BRS.0000000000001560

    Article  PubMed  Google Scholar 

  3. Kawaguchi Y, Matsui H, Ishihara H, Gejo R, Yasuda T (2000) Surgical outcome of cervical expansive laminoplasty in patients with diabetes mellitus. Spine (Phila Pa 1976) 25:551–555. https://doi.org/10.1097/00007632-200003010-00004

    Article  CAS  PubMed  Google Scholar 

  4. Nori S, Nagoshi N, Yoshioka K, Nojiri K, Takahashi Y, Fukuda K, Ikegami T, Yoshida H, Iga T, Tsuji O, Suzuki S, Okada E, Yagi M, Nakamura M, Matsumoto M, Watanabe K, Ishii K, Yamane J (2021) Diabetes does not adversely affect neurological recovery and reduction of neck pain after posterior decompression surgery for cervical spondylotic myelopathy: results from a retrospective multicenter study of 675 patients. Spine (Phila Pa 1976) 46:433–439. https://doi.org/10.1097/BRS.0000000000003817

    Article  PubMed  Google Scholar 

  5. Machino M, Yukawa Y, Ito K, Inoue T, Kobayakawa A, Matsumoto T, Ouchida J, Tomita K, Kato F (2014) Impact of diabetes on the outcomes of cervical laminoplasty: a prospective cohort study of more than 500 patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976) 39:220–227. https://doi.org/10.1097/BRS.0000000000000102

    Article  PubMed  Google Scholar 

  6. Arnold PM, Fehlings MG, Kopjar B, Yoon ST, Massicotte EM, Vaccaro AR, Brodke DS, Shaffrey CI, Smith JS, Woodard EJ, Banco RJ, Chapman JR, Janssen ME, Bono CM, Sasso RC, Dekutoski MB, Gokaslan ZL (2014) Mild diabetes is not a contraindication for surgical decompression in cervical spondylotic myelopathy: results of the AOSpine North America multicenter prospective study (CSM). Spine J 14:65–72. https://doi.org/10.1016/j.spinee.2013.06.016

    Article  PubMed  Google Scholar 

  7. Maertens de Noordhout A, Remacle JM, Pepin JL, Born JD, Delwaide PJ (1991) Magnetic stimulation of the motor cortex in cervical spondylosis. Neurology 41:75–80. https://doi.org/10.1212/wnl.41.1.75

    Article  CAS  PubMed  Google Scholar 

  8. Yu Z, Lin K, Chen J, Chen KH, Guo W, Dai Y, Chen Y, Zou X, Peng X (2020) Magnetic resonance imaging and dynamic X-ray’s correlations with dynamic electrophysiological findings in cervical spondylotic myelopathy: a retrospective cohort study. BMC Neurol 20:367. https://doi.org/10.1186/s12883-020-01945-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Lazzaro V, Restuccia D, Colosimo C, Tonali P (1992) The contribution of magnetic stimulation of the motor cortex to the diagnosis of cervical spondylotic myelopathy. Correlation of central motor conduction to distal and proximal upper limb muscles with clinical and MRI findings. Electroencephalogr Clin Neurophysiol 85:311–320. https://doi.org/10.1016/0168-5597(92)90107-m

    Article  PubMed  Google Scholar 

  10. Nakai S, Sonoo M, Shimizu T (2008) Somatosensory evoked potentials (SEPs) for the evaluation of cervical spondylotic myelopathy: utility of the onset-latency parameters. Clin Neurophysiol 119:2396–2404. https://doi.org/10.1016/j.clinph.2008.07.003

    Article  PubMed  Google Scholar 

  11. Nakanishi K, Tanaka N, Kamei N, Hiramatsu T, Ujigo S, Sumiyoshi N, Rikita T, Takazawa A, Ochi M (2015) Electrophysiological assessments of the motor pathway in diabetic patients with compressive cervical myelopathy. J Neurosurg Spine 23:707–714. https://doi.org/10.3171/2015.3.SPINE141060

    Article  PubMed  Google Scholar 

  12. Chistyakov AV, Soustiel JF, Hafner H, Kaplan B, Feinsod M (2004) The value of motor and somatosensory evoked potentials in evaluation of cervical myelopathy in the presence of peripheral neuropathy. Spine (Phila Pa 1976) 29:E239-247. https://doi.org/10.1097/01.brs.0000127191.12310.fb

    Article  PubMed  Google Scholar 

  13. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes M, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, Hanafusa T, Haneda M, Ueki K (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1:212–228. https://doi.org/10.1111/j.2040-1124.2010.00074.x

    Article  Google Scholar 

  14. American Diabetes A (2021) 6. Glycemic targets: standards of medical care in diabetes-2021. Diabetes Care 44:S73–S84. https://doi.org/10.2337/dc21-S006

    Article  Google Scholar 

  15. Tetreault L, Kopjar B, Nouri A, Arnold P, Barbagallo G, Bartels R, Qiang Z, Singh A, Zileli M, Vaccaro A, Fehlings MG (2017) The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur Spine J 26:78–84. https://doi.org/10.1007/s00586-016-4660-8

    Article  PubMed  Google Scholar 

  16. Hirabayashi K, Miyakawa J, Satomi K, Maruyama T, Wakano K (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine (Phila Pa 1976) 6:354–364. https://doi.org/10.1097/00007632-198107000-00005

    Article  CAS  PubMed  Google Scholar 

  17. Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, Mauguière F, Shibasaki H, Sutherling W, Vibert JF (1994) IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91:6–11. https://doi.org/10.1016/0013-4694(94)90012-4

    Article  CAS  PubMed  Google Scholar 

  18. Yu Z, Chen J, Cheng X, Xie D, Chen Y, Zou X, Peng X (2022) Patients with degenerative cervical myelopathy exhibit neurophysiological improvement upon extension and flexion: a retrospective cohort study with a minimum 1-year follow-up. BMC Neurol 22:110. https://doi.org/10.1186/s12883-022-02641-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zegers de Beyl D, Delberghe X, Herbaut AG, Brunko E (1988) The somatosensory central conduction time: physiological considerations and normative data. Electroencephalogr Clin Neurophysiol 71:17–26. https://doi.org/10.1016/0168-5597(88)90015-9

    Article  CAS  PubMed  Google Scholar 

  20. Nakanishi K, Tanaka N, Kamei N, Ohta R, Fujioka Y, Hiramatsu T, Ujigo S, Ochi M (2014) Electrophysiological evidence of functional improvement in the corticospinal tract after laminoplasty in patients with cervical compressive myelopathy: clinical article. J Neurosurg Spine 21:210–216. https://doi.org/10.3171/2014.4.SPINE13545

    Article  PubMed  Google Scholar 

  21. Yu Z, Pan W, Chen J, Peng X, Ling Z, Zou X (2022) Application of electrophysiological measures in degenerative cervical myelopathy. Front Cell Dev Biol 10:834668. https://doi.org/10.3389/fcell.2022.834668

    Article  PubMed  PubMed Central  Google Scholar 

  22. Machino M, Yukawa Y, Ito K, Inoue T, Kobayakawa A, Matsumoto T, Ouchida J, Tomita K, Kato F (2014) Risk factors for poor outcome of cervical laminoplasty for cervical spondylotic myelopathy in patients with diabetes. J Bone Joint Surg Am 96:2049–2055. https://doi.org/10.2106/jbjs.N.00064

    Article  PubMed  Google Scholar 

  23. Kim HJ, Moon SH, Kim HS, Moon ES, Chun HJ, Jung M, Lee HM (2008) Diabetes and smoking as prognostic factors after cervical laminoplasty. J Bone Joint Surg Br 90:1468–1472. https://doi.org/10.1302/0301-620x.90b11.20632

    Article  PubMed  Google Scholar 

  24. Dokai T, Nagashima H, Nanjo Y, Tanida A, Teshima R (2012) Surgical outcomes and prognostic factors of cervical spondylotic myelopathy in diabetic patients. Arch Orthop Trauma Surg 132:577–582. https://doi.org/10.1007/s00402-011-1449-4

    Article  PubMed  Google Scholar 

  25. Tanishima S, Mihara T, Tanida A, Takeda C, Murata M, Takahashi T, Yamane K, Morishita T, Morio Y, Ishii H, Fukata S, Nanjo Y, Hamamoto Y, Dokai T, Nagashima H (2019) Influence of diabetes mellitus on surgical outcomes in patients with cervical myelopathy: a prospective, multicenter study. Asian Spine J 13:468–477. https://doi.org/10.31616/asj.2018.0082

    Article  PubMed  Google Scholar 

  26. Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Yamazaki I, Kamimura M, Ebara S, Kato H (2008) Assessment of cervical myelopathy using transcranial magnetic stimulation and prediction of prognosis after laminoplasty. Spine (Phila Pa 1976) 33:E15-20. https://doi.org/10.1097/BRS.0b013e31815e5dae

    Article  PubMed  Google Scholar 

  27. Biessels GJ, Cristino NA, Rutten GJ, Hamers FP, Erkelens DW, Gispen WH (1999) Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment. Brain 122(Pt 4):757–768. https://doi.org/10.1093/brain/122.4.757

    Article  PubMed  Google Scholar 

  28. Suzuki C, Ozaki I, Tanosaki M, Suda T, Baba M, Matsunaga M (2000) Peripheral and central conduction abnormalities in diabetes mellitus. Neurology 54:1932–1937. https://doi.org/10.1212/wnl.54.10.1932

    Article  CAS  PubMed  Google Scholar 

  29. Krnjevic K, Morris ME (1976) Input-output relation of transmission through cuneate nucleus. J Physiol 257:791–815. https://doi.org/10.1113/jphysiol.1976.sp011398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cameron NE, Eaton SE, Cotter MA, Tesfaye S (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44:1973–1988. https://doi.org/10.1007/s001250100001

    Article  CAS  PubMed  Google Scholar 

  31. Olsson Y, Save-Soderbergh J, Sourander P, Angervall L (1968) A patho-anatomical study of the central and peripheral nervous system in diabetes of early onset and long duration. Pathol Eur 3:62–79

    CAS  PubMed  Google Scholar 

  32. Reske-Nielsen E, Lundbaek K (1968) Pathological changes in the central and peripheral nervous system of young long-term diabetics. II. The spinal cord and peripheral nerves. Diabetologia 4:34–43. https://doi.org/10.1007/BF01241031

    Article  CAS  PubMed  Google Scholar 

  33. Janahi NM, Santos D, Blyth C, Bakhiet M, Ellis M (2015) Diabetic peripheral neuropathy, is it an autoimmune disease? Immunol Lett 168:73–79. https://doi.org/10.1016/j.imlet.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  34. Slager UT (1978) Diabetic myelopathy. Arch Pathol Lab Med 102:467–469

    CAS  PubMed  Google Scholar 

Download references

Funding

Natural Science Foundation of Guangdong Province (2022A1515012557), Guangzhou Science and Technology Program Key Projects (202103000053) and National Natural Science Foundation of China (82102636).

Author information

Authors and Affiliations

Authors

Contributions

ZY, CC and TY analyzed the data, drafted and revised the manuscript. YY revised the manuscript critically for important intellectual content. YC and XZ made substantial contributions to the conception and design of the study and provided final approval of the version to be published. SZ and SZ were involved in the acquisition of data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuenong Zou.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Chen, C., Yu, T. et al. Electrophysiological evidence of diabetes’ impacts on central conduction recoveries in degenerative cervical myelopathy after surgery. Eur Spine J 32, 2101–2109 (2023). https://doi.org/10.1007/s00586-023-07605-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07605-8

Keywords

Navigation