Skip to main content

Advertisement

Log in

The association between vertebral endplate defects, subchondral bone marrow changes, and lumbar intervertebral disc degeneration: a retrospective, 3-year longitudinal study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of vertebral endplate defects and subchondral bone marrow changes on the development of lumbar intervertebral disc degeneration (DD).

Methods

Patients > 18 y/o without any history of lumbar fusion who had repeat lumbar magnetic resonance imaging scans primarily for low back pain (LBP) performed at a minimum of 3 years apart at a single institution, and no spinal surgery in between scans were included. Total endplate score (TEPS), Modic changes (MC), and Pfirrmann grading (PFG) per lumbar disc level were assessed. DD was defined as PFG ≥ 4.

Results

Three hundred and fifty-three patients (54.4% female) were included in the final analysis, comprising 1765 lumbar intervertebral discs. The patient population was 85.6% Caucasian with a median age of 60.1 years and a body mass index (BMI) of 25.8 kg/m2. A cutoff score of 5 was identified for the TEPS above which both the prevalence of DD and the odds of developing DD increased. The probability of developing DD did not differ significantly between lumbar disc levels (P = 0.419). In the multivariable analysis with adjustments for age, sex, race, body mass index (BMI), MC, TEPS cutoff > 5, and spinal level, only age (OR = 1.020; P = 0.002) was found to be an independent risk factor for developing intervertebral DD.

Conclusion

Our results suggest that TEPS does not unequivocally predict intervertebral DD in patients with LBP, since higher degrees of endplate defects might also develop secondarily to DD, and MC tend to occur late in the cascade of degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Pappou IP, Cammisa FPJ, Girardi FP (2007) Correlation of end plate shape on MRI and disc degeneration in surgically treated patients with degenerative disc disease and herniated nucleus pulposus. Spine J 7:32–38. https://doi.org/10.1016/j.spinee.2006.02.029

    Article  PubMed  Google Scholar 

  2. Adams MA, Dolan P (2012) Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat 221:497–506. https://doi.org/10.1111/j.1469-7580.2012.01551.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Farshad-Amacker NA, Hughes AP, Aichmair A et al (2014) Determinants of evolution of endplate and disc degeneration in the lumbar spine: a multifactorial perspective. Eur Spine J 23:1863–1868. https://doi.org/10.1007/s00586-014-3382-z

    Article  PubMed  Google Scholar 

  4. Adams MA, Lama P, Zehra U, Dolan P (2015) Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clin Anat 28:195–204. https://doi.org/10.1002/ca.22404

    Article  PubMed  Google Scholar 

  5. Granville Smith I, Danckert NP, Freidin MB et al (2022) Evidence for infection in intervertebral disc degeneration: a systematic review. Eur Spine J 31:414–430. https://doi.org/10.1007/s00586-021-07062-1

    Article  PubMed  Google Scholar 

  6. Desmoulin GT, Pradhan V, Milner TE (2020) Mechanical aspects of intervertebral disc injury and implications on biomechanics. Spine 45:E457–E464. https://doi.org/10.1097/BRS.0000000000003291

    Article  PubMed  Google Scholar 

  7. (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390: 1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2

  8. Brinjikji W, Luetmer PH, Comstock B et al (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36:811–816. https://doi.org/10.3174/ajnr.A4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brinjikji W, Diehn FE, Jarvik JG et al (2015) MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. AJNR Am J Neuroradiol 36:2394–2399. https://doi.org/10.3174/ajnr.A4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luoma K, Vehmas T, Kerttula L et al (2016) Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J 25:2873–2881. https://doi.org/10.1007/s00586-016-4715-x

    Article  PubMed  Google Scholar 

  11. Sääksjärvi S, Kerttula L, Luoma K et al (2020) Disc degeneration of young low back pain patients: a prospective 30-year follow-up MRI study. Spine 45:1341–1347. https://doi.org/10.1097/BRS.0000000000003548

    Article  PubMed  Google Scholar 

  12. Aavikko A, Lohman M, Ristolainen L et al (2022) ISSLS prize in clinical science 2022: accelerated disc degeneration after pubertal growth spurt differentiates adults with low back pain from their asymptomatic peers. Eur Spine J 31:1080–1087. https://doi.org/10.1007/s00586-022-07184-0

    Article  PubMed  Google Scholar 

  13. Gallucci M, Puglielli E, Splendiani A et al (2005) Degenerative disorders of the spine. Eur Radiol 15:591–598. https://doi.org/10.1007/s00330-004-2618-4

    Article  PubMed  Google Scholar 

  14. Rao D, Scuderi G, Scuderi C et al (2018) The use of imaging in management of patients with low back pain. J Clin Imaging Sci 8:30. https://doi.org/10.4103/jcis.JCIS_16_18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011

    Article  CAS  PubMed  Google Scholar 

  16. Lotz JC, Fields AJ, Liebenberg EC (2013) The role of the vertebral end plate in low back pain. Glob Spine J 3:153–164. https://doi.org/10.1055/s-0033-1347298

    Article  CAS  Google Scholar 

  17. Rajasekaran S, Venkatadass K, Naresh Babu J et al (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17:626–643. https://doi.org/10.1007/s00586-008-0645-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dolan P, Luo J, Pollintine P et al (2013) Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine 38:1473–1481. https://doi.org/10.1097/BRS.0b013e318290f3cc

    Article  PubMed  Google Scholar 

  19. Farshad-Amacker NA, Hughes A, Herzog RJ et al (2017) The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 27:2507–2520. https://doi.org/10.1007/s00330-016-4584-z

    Article  PubMed  Google Scholar 

  20. Chen L, Battié MC, Yuan Y et al (2020) Lumbar vertebral endplate defects on magnetic resonance images: prevalence, distribution patterns, and associations with back pain. Spine J 20:352–360. https://doi.org/10.1016/j.spinee.2019.10.015

    Article  CAS  PubMed  Google Scholar 

  21. Minetama M, Kawakami M, Teraguchi M et al (2022) Endplate defects, not the severity of spinal stenosis, contribute to low back pain in patients with lumbar spinal stenosis. Spine J 22:370–378. https://doi.org/10.1016/j.spinee.2021.09.008

    Article  PubMed  Google Scholar 

  22. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199. https://doi.org/10.1148/radiology.166.1.3336678

    Article  CAS  PubMed  Google Scholar 

  23. Munir S, Freidin MB, Rade M et al (2018) Endplate defect is heritable, associated with low back pain and triggers intervertebral disc degeneration: a longitudinal study from TwinsUK. Spine 43:1496–1501. https://doi.org/10.1097/BRS.0000000000002721

    Article  PubMed  Google Scholar 

  24. Mallow GM, Zepeda D, Kuzel TG et al (2022) ISSLS PRIZE in clinical science 2022: epidemiology, risk factors and clinical impact of juvenile modic changes in paediatric patients with low back pain. Eur Spine J 31:1069–1079. https://doi.org/10.1007/s00586-022-07125-x

    Article  PubMed  Google Scholar 

  25. Rade M, Määttä JH, Freidin MB et al (2018) Vertebral endplate defect as initiating factor in intervertebral disc degeneration: strong association between endplate defect and disc degeneration in the general population. Spine 43:412–419. https://doi.org/10.1097/BRS.0000000000002352

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brennan P, Silman A (1992) Statistical methods for assessing observer variability in clinical measures. BMJ 304:1491–1494. https://doi.org/10.1136/bmj.304.6840.1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farshad-Amacker NA, Hughes AP, Aichmair A et al (2014) Is an annular tear a predictor for accelerated disc degeneration? Eur Spine J 23:1825–1829. https://doi.org/10.1007/s00586-014-3260-8

    Article  PubMed  Google Scholar 

  28. Zehra U, Robson-Brown K, Adams MA, Dolan P (2015) Porosity and thickness of the vertebral endplate depend on local mechanical loading. Spine 40:1173–1180. https://doi.org/10.1097/BRS.0000000000000925

    Article  PubMed  Google Scholar 

  29. Jin L, Feng G, Reames DL et al (2013) The effects of simulated microgravity on intervertebral disc degeneration. Spine J 13:235–242. https://doi.org/10.1016/j.spinee.2012.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu D, Zhou X, Zheng C et al (2019) The effects of simulated +Gz and microgravity on intervertebral disc degeneration in rabbits. Sci Rep 9:16608. https://doi.org/10.1038/s41598-019-53246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey JF, Nyayapati P, Johnson GTA et al (2022) Biomechanical changes in the lumbar spine following spaceflight and factors associated with postspaceflight disc herniation. Spine J 22:197–206. https://doi.org/10.1016/j.spinee.2021.07.021

    Article  PubMed  Google Scholar 

  32. Su Y, Ren D, Chen Y et al (2022) Effect of endplate reduction on endplate healing morphology and intervertebral disc degeneration in patients with thoracolumbar vertebral fracture. Eur Spine J. https://doi.org/10.1007/s00586-022-07215-w

    Article  PubMed  Google Scholar 

  33. Kuisma M, Karppinen J, Niinimäki J et al (2006) A three-year follow-up of lumbar spine endplate (modic) changes. Spine 31:1714–1718. https://doi.org/10.1097/01.brs.0000224167.18483.14

    Article  PubMed  Google Scholar 

  34. Hutton MJ, Bayer JH, Powell JM (2011) Modic vertebral body changes: the natural history as assessed by consecutive magnetic resonance imaging. Spine 36:2304–2307. https://doi.org/10.1097/BRS.0b013e31821604b6

    Article  PubMed  Google Scholar 

  35. Teichtahl AJ, Finnin MA, Wang Y et al (2017) The natural history of modic changes in a community-based cohort. Jt Bone Spine 84:197–202. https://doi.org/10.1016/j.jbspin.2016.03.011

    Article  Google Scholar 

  36. Tamai H, Teraguchi M, Hashizume H et al (2022) A prospective, 3-year longitudinal study of modic changes of the lumbar spine in a population-based cohort: the wakayama spine study. Spine 47:490–497. https://doi.org/10.1097/BRS.0000000000004301

    Article  PubMed  Google Scholar 

  37. de Roos A, Kressel H, Spritzer C, Dalinka M (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 149:531–534. https://doi.org/10.2214/ajr.149.3.531

    Article  PubMed  Google Scholar 

  38. Albert HB, Briggs AM, Kent P et al (2011) The prevalence of MRI-defined spinal pathoanatomies and their association with modic changes in individuals seeking care for low back pain. Eur Spine J 20:1355–1362. https://doi.org/10.1007/s00586-011-1794-6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mok FPS, Samartzis D, Karppinen J et al (2016) Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J 16:32–41. https://doi.org/10.1016/j.spinee.2015.09.060

    Article  PubMed  Google Scholar 

  40. Hassett G, Hart DJ, Manek NJ et al (2003) Risk factors for progression of lumbar spine disc degeneration: the Chingford study. Arthritis Rheum 48:3112–3117. https://doi.org/10.1002/art.11321

    Article  CAS  PubMed  Google Scholar 

  41. Maurer E, Klinger C, Lorbeer R et al (2020) Long-term effect of physical inactivity on thoracic and lumbar disc degeneration-an MRI-based analysis of 385 individuals from the general population. Spine J 20:1386–1396. https://doi.org/10.1016/j.spinee.2020.04.016

    Article  PubMed  Google Scholar 

  42. Udby PM, Ohrt-Nissen S, Bendix T et al (2021) The association of MRI findings and long-term disability in patients with chronic low back pain. Glob Spine J 11:633–639. https://doi.org/10.1177/2192568220921391

    Article  Google Scholar 

  43. Salo S, Hurri H, Rikkonen T et al (2022) Association between severe lumbar disc degeneration and self-reported occupational physical loading. J Occup Health 64:e12316. https://doi.org/10.1002/1348-9585.12316

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funds, grants, or other support was received for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MM, JAC, JS, AAS, FPC, FPG, and APH contributed to conception and design. MM, DAA, LAS, LO, HH, and MM contributed to acquisition of data. MM, JZ, and APH contributed to analysis and interpretation of data. MM contributed to drafting the article. All authors critically revising the article. All authors reviewed submitted version of manuscript. APH approved the final version of the manuscript on behalf of all authors. MM and JZ contributed to statistical analysis. JS contributed to administrative/technical/material support. APH contributed to study supervision.

Corresponding author

Correspondence to Alexander P. Hughes.

Ethics declarations

Conflict of interests

Authors DAA, LAS, LO, HH, MM, JZ, and JS have no relevant financial or non-financial interests to disclose. Author MM declares financial interests: Research Support: Medtronic (Schweiz) AG. Author JAC declares financial interests: Consulting: Pfizer, Inc.; Eli-Lilly; Globus Medical; Regeneron; AstraZeneca; Scientific Advisory Board: Carestream; Image Analysis Group; Image Biopsy Lab. Author AAS declares financial interests: Royalties: Ortho Development Corp. Private Investments: Vestia Ventures MiRus Investment, LLC; ISPH II, LLC; ISPH 3, LLC; VBros Venture Partners X; Centinel Spine. Consulting: Clariance, Inc.; Kuros Biosciences AG, DePuy Synthes Products, Inc./Medical Device Business Services, Inc. Speaking and/or Teaching Arrangements: DePuy Synthes Products, Inc./Medical Device Business Services, Inc. Scientific Advisory Board: DePuy Synthes Products, Inc./Medical Device Business Services, Inc. Research Support: Spinal Kinetics, Inc. Author FPC declares financial interests: Research Support: 4WEB Medical Inc.; Camber Spine, Centinel Spine; Mallinckrodt Pharmaceuticals. Consulting: Accelus, NuVasive, Inc.; Spine Biopharma, LLC. Royalties: Accelus. Ownership Interest: Healthpoint Capital Partners, LP; ISPH II, LLC; ISPH 3 Holdings, LLC; Ivy Healthcare Capital Partners, LLC; Medical Device Partners II, LLC; Medical Device Partners III, LLC; Tissue Differentiation Intelligence, LLC; VBVP VI, LLC; VBVP X, LLC; Woven Orthopedic Technologies. Board of Directors: Orthobond Corporation; Medical Device Partners II, LLC; Spine Biopharma, LLC; Woven Orthopedic Technologies. Author FPG declares financial interests: Consulting: DePuy Synthes Spine; NuVasive, Inc.; Spineart USA, Inc.; Ethicon, Inc.; Ortho Development Corp. Stock/Shareholder: Bonovo Orthopedics, Inc.; Healthpoint Capital Partners, LP; Tissue Differentiation Intelligence; BICMD. Royalties: NuVasive, Inc.; Ortho Development Corp; DePuy Synthes Spine. Author APH declares financial interests: Research Support: Kuros Biosciences AG. Fellowship Support: Kuros Biosurgery AG, NuVasive, Inc.

Ethics approval

IRB approval: Hospital for Special Surgery #2019–2137.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, M., Adl Amini, D., Albertini Sanchez, L. et al. The association between vertebral endplate defects, subchondral bone marrow changes, and lumbar intervertebral disc degeneration: a retrospective, 3-year longitudinal study. Eur Spine J 32, 2350–2357 (2023). https://doi.org/10.1007/s00586-023-07544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07544-4

Keywords

Navigation