Skip to main content
Log in

Lumbar plexus safe working zones with lateral lumbar interbody fusion: a systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Significant risk of injury to the lumbar plexus and its departing motor and sensory nerves exists with lateral lumbar interbody fusion (LLIF). Several cadaveric and imaging studies have investigated the lumbar plexus position with respect to the vertebral body anteroposterior plane. To date, no systematic review and meta-analysis of the lumbar plexus safe working zones for LLIF has been performed.

Methods

This systematic review was conducted according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Relevant studies reporting on the position of the lumbar plexus with relation to the vertebral body in the anteroposterior plane were identified from a PubMed database query. Quantitative analysis was performed using Welch’s t test.

Results

Eighteen studies were included, encompassing 1005 subjects and 2472 intervertebral levels. Eleven studies used supine magnetic resonance imaging (MRI) with in vivo subjects. Seven studies used cadavers, five of which performed dissection in the left lateral decubitus position. A significant correlation (p < 0.001) existed between anterior lumbar plexus displacement and evaluation with in vivo MRI at all levels between L1-L5 compared with cadaveric measurement. Supine position was also associated with significant (p < 0.001) anterior shift of the lumbar plexus at all levels between L1-L5.

Conclusions

This is the first comprehensive systematic review and meta-analysis of the lumbar neural components and safe working zones for LLIF. Our analysis suggests that the lumbar plexus is significantly displaced ventrally with the supine compared to lateral decubitus position, and that MRI may overestimate ventral encroachment of lumbar plexus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

LLIF:

Lateral lumbar interbody fusion

PPS:

Percutaneous pedicle screws

SCPL:

Sagittal central perpendicular line

References

  1. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443

    Article  Google Scholar 

  2. Laws CJ, Coughlin DG, Lotz JC et al (2012) Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Spine 37:819–825. https://doi.org/10.1097/BRS.0b013e31823551aa

    Article  PubMed  Google Scholar 

  3. Le TV, Baaj AA, Dakwar E et al (2012) Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine 37:1268–2173. https://doi.org/10.1097/brs.0b013e3182458b2f

    Article  PubMed  Google Scholar 

  4. Hijji FY, Narain AS, Bohl DD et al (2017) Lateral lumbar interbody fusion: a systematic review of complication rates. Spine J 17:1412–1419. https://doi.org/10.1016/j.spinee.2017.04.022

    Article  PubMed  Google Scholar 

  5. Moro T, Kikuchi SI, Konno SI, Yaginuma H (2003) An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976) 28:423–428. https://doi.org/10.1097/01.BRS.0000049226.87064.3B

    Article  Google Scholar 

  6. Benglis D, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine: laboratory investigation. J Neurosurg Spine 10:139–144. https://doi.org/10.3171/2008.10.SPI08479

    Article  PubMed  Google Scholar 

  7. Regev GJ, Chen L, Dhawan M et al (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine (Phila Pa 1976) 34:1330–1335. https://doi.org/10.1097/BRS.0b013e3181a029e1

    Article  Google Scholar 

  8. Oikawa Y, Eguchi Y, Watanabe A et al (2017) Anatomical evaluation of lumbar nerves using diffusion tensor imaging and implications of lateral decubitus for lateral transpsoas approach. Eur Spine J 26:2804–2810. https://doi.org/10.1007/s00586-017-5082-y

    Article  PubMed  Google Scholar 

  9. Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1–9. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Battié MC, Videman T (2012) A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J 21:2316–2323. https://doi.org/10.1007/s00586-012-2415-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg: Spine 13:260–266. https://doi.org/10.3171/2010.3.SPINE09766

    Article  Google Scholar 

  12. Park DK, Lee MJ, Lin EL et al (2010) The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech 23:223–228. https://doi.org/10.1097/BSD.0b013e3181a9d540

    Article  PubMed  Google Scholar 

  13. Davis TT, Bae HW, Mok JM et al (2011) Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4–L5 disc. J Bone Joint Surg Am 93:1482–1487. https://doi.org/10.2106/JBJS.J.00962

    Article  PubMed  Google Scholar 

  14. Guérin P, Obeid I, Bourghli A et al (2012) The lumbosacral plexus: anatomic considerations for minimally invasive retroperitoneal transpsoas approach. Surg Radiol Anat 34:151–157. https://doi.org/10.1007/s00276-011-0881-z

    Article  PubMed  Google Scholar 

  15. Spivak JM, Paulino CB, Patel A et al (2013) Safe zone for retractor placement to the lumbar spine via the transpsoas approach. J Orthop Surg (Hong Kong) 21:77–81. https://doi.org/10.1177/230949901302100120

    Article  Google Scholar 

  16. Menezes CM, de Andrade LM, da Silva Herrero CFP et al (2015) Diffusion-weighted magnetic resonance (DW-MR) neurography of the lumbar plexus in the preoperative planning of lateral access lumbar surgery. Eur Spine J 24:817–826. https://doi.org/10.1007/s00586-014-3598-y

    Article  PubMed  Google Scholar 

  17. Quinn JC, Fruauff K, Lebl DR et al (2015) Magnetic resonance neurography of the lumbar plexus at the L4–L5 disc: development of a preoperative surgical planning tool for lateral lumbar transpsoas interbody fusion (LLIF). Spine (Phila Pa 1976) 40:942–947. https://doi.org/10.1097/BRS.0000000000000899

    Article  Google Scholar 

  18. Louie PK, Narain AS, Hijji FY et al (2017) Radiographic analysis of psoas morphology and its association with neurovascular structures at L4–5 with reference to lateral approaches. Spine (Phila Pa 1976) 42:E1386–E1392. https://doi.org/10.1097/BRS.0000000000002303

    Article  Google Scholar 

  19. Ebata S, Ohba T, Haro H (2018) Integrated anatomy of the neuromuscular, visceral, vascular, and urinary tissues determined by MRI for a surgical approach to lateral lumbar interbody fusion in the presence or absence of spinal deformity. Spine Surg Relat Res 2:140–147. https://doi.org/10.22603/ssrr.2017-0036

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kepler CK, Bogner EA, Herzog RJ, Huang RC (2011) Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J 20:550–556. https://doi.org/10.1007/s00586-010-1593-5

    Article  PubMed  Google Scholar 

  21. Guérin P, Obeid I, Gille O et al (2011) Safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: a morphometric study. Surg Radiol Anat 33:665–671. https://doi.org/10.1007/s00276-011-0798-6

    Article  PubMed  Google Scholar 

  22. He L, Kang Z, Tang WJ, Rong LM (2015) A MRI study of lumbar plexus with respect to the lateral transpsoas approach to the lumbar spine. Eur Spine J 24:2538–2545. https://doi.org/10.1007/s00586-015-3847-8

    Article  PubMed  Google Scholar 

  23. Eguchi Y, Norimoto M, Suzuki M et al (2019) Diffusion tensor tractography of the lumbar nerves before a direct lateral transpsoas approach to treat degenerative lumbar scoliosis. J Neurosurg Spine 30:461–469. https://doi.org/10.3171/2018.9.SPINE18834

    Article  Google Scholar 

  24. Yusof MI, Nadarajan E, Abdullah MS (2014) The morphometric study of L3–L4 and L4–L5 lumbar spine in asian population using magnetic resonance imaging: feasibility analysis for transpsoas lumbar interbody fusion. Spine Phila Pa 39:E811–E816. https://doi.org/10.1097/BRS.0000000000000899

    Article  Google Scholar 

  25. Cahill KS, Martinez JL, Wang MY et al (2012) Motor nerve injuries following the minimally invasive lateral transpsoas approach: clinical article. J Neurosurg Spine 17:227–231. https://doi.org/10.3171/2012.5.SPINE1288

    Article  PubMed  Google Scholar 

  26. Berjano P, Lamartina C (2011) Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J 20:1584–1586. https://doi.org/10.1007/s00586-011-1997-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36:26–32. https://doi.org/10.1097/BRS.0b013e3181e1040a

    Article  Google Scholar 

  28. Voyadzis JM, Felbaum D, Rhee J (2014) The rising psoas sign: an analysis of preoperative imaging characteristics of aborted minimally invasive lateral interbody fusions at L4–5: report of 3 cases. J Neurosurg Spine 20:531–537. https://doi.org/10.3171/2014.1.SPINE13153

    Article  PubMed  Google Scholar 

  29. Smith WD, Youssef JA, Christian G et al (2012) Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5–6. J Spinal Disord Tech 25:285–291. https://doi.org/10.1097/BSD.0b013e31821e262f

    Article  PubMed  Google Scholar 

  30. Barber SM, Boghani Z, Steele W et al (2017) Variation in psoas muscle location relative to the safe working zone for L4/5 lateral transpsoas interbody fusion: a morphometric analysis. World Neurosurg 107:396–399. https://doi.org/10.1016/j.wneu.2017.07.178

    Article  PubMed  Google Scholar 

  31. Siu TLT, Najafi E, Lin K (2020) Lateral lumbar interbody fusion at L4–5: a morphometric analysis of psoas anatomy and cage placement. World Neurosurg 141:E691–E699. https://doi.org/10.1016/j.wneu.2020.05.274

    Article  PubMed  Google Scholar 

  32. Tanida S, Fujibayashi S, Otsuki B et al (2017) Influence of spinopelvic alignment and morphology on deviation in the course of the psoas major muscle. J Orthop Sci 22:1001–1008. https://doi.org/10.1016/j.jos.2017.08.002

    Article  PubMed  Google Scholar 

  33. Patel A, Oh J, Leven D et al (2018) Anatomical modifications during the lateral transpsoas approach to the lumbar spine. the impact of vertebral rotation. Int J Spine S 12:8–14. https://doi.org/10.14444/5002

    Article  Google Scholar 

  34. O’Brien J, Haines C, Dooley ZA et al (2014) Femoral nerve strain at L4–L5 is minimized by hip flexion and increased by table break when performing lateral interbody fusion. Spine 39:33–38. https://doi.org/10.1097/BRS.0000000000000039

    Article  PubMed  Google Scholar 

  35. Buckland AJ, Beaubrun BM, Isaacs E et al (2018) Psoas morphology differs between supine and sitting magnetic resonance imaging lumbar spine: implications for lateral lumbar interbody fusion. Asian Spine J 12:29–36. https://doi.org/10.4184/asj.2018.12.1.29

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pimenta L, Amaral R, Taylor W et al (2020) The prone transpsoas technique: preliminary radiographic results of a multicenter experience. Eur Spine J 30:108–113. https://doi.org/10.1007/s00586-020-06471-y

    Article  PubMed  Google Scholar 

  37. Lamartina C, Berjano P (2020) Prone single-position extreme lateral interbody fusion (Pro-XLIF): preliminary results. Eur Spine J 29:6–13. https://doi.org/10.1007/s00586-020-06303-z

    Article  PubMed  Google Scholar 

  38. Godzik J, Ohiorhenuan IE, Xu DS et al (2020) Single-position prone lateral approach: cadaveric feasibility study and early clinical experience. Neurosurg Focus 49:E15. https://doi.org/10.3171/2020.6.FOCUS20359

    Article  PubMed  Google Scholar 

  39. Hiyama A, Katoh H, Sakai D et al (2019) Comparison of radiological changes after single- position versus dual- position for lateral interbody fusion and pedicle screw fixation. BMC Musculoskelet Disord 20:601. https://doi.org/10.1186/s12891-019-2992-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blizzard DJ, Thomas JA (2018) MIS single-position lateral and oblique lateral lumbar interbody fusion and bilateral pedicle screw fixation: feasibility and perioperative results. Spine 43:440–446. https://doi.org/10.1097/BRS.0000000000002330

    Article  PubMed  Google Scholar 

  41. Ouchida J, Kanemura T, Satake K et al (2020) Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room. Eur Spine J 29:1277–1286. https://doi.org/10.1007/s00586-020-06388-6

    Article  PubMed  Google Scholar 

  42. Hiyama A, Sakai D, Sato M, Watanabe M (2019) The analysis of percutaneous pedicle screw technique with guide wire-less in lateral decubitus position following extreme lateral interbody fusion. J Orthop Surg Res 14:304. https://doi.org/10.1186/s13018-019-1354-z

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huntsman KT, Riggleman JR, Ahrendtsen LA, Ledonio CG (2020) Navigated robot-guided pedicle screws placed successfully in single-position lateral lumbar interbody fusion. J Robot Surg 14:643–647. https://doi.org/10.1007/s11701-019-01034-w

    Article  PubMed  Google Scholar 

  44. Ziino C, Konopka JA, Ajiboye RM et al (2018) Single position versus lateral-then-prone positioning for lateral interbody fusion and pedicle screw fixation. J Spine Surg 4:717–724. https://doi.org/10.21037/jss.2018.12.03

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ziino C, Arzeno A, Cheng I (2019) Analysis of single-position for revision surgery using lateral interbody fusion and pedicle screw fixation: feasibility and perioperative results. J Spine Surg 5:201–206. https://doi.org/10.21037/jss.2019.05.09

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nakahara M, Yasuhara T, Inoue T et al (2016) Accuracy of percutaneous pedicle screw insertion technique with conventional dual fluoroscopy units and a retrospective comparative study based on surgeon experience. Global Spine J 6:322–328. https://doi.org/10.1055/s-0035-1563405

    Article  PubMed  Google Scholar 

  47. Oh HS, Kim JS, Lee SH et al (2013) Comparison between the accuracy of percutaneous and open pedicle screw fixations in lumbosacral fusion. Spine J 13:1751–1757. https://doi.org/10.1016/j.spinee.2013.03.042

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

No funding was received in support of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Dallas E. Kramer.

Ethics declarations

Conflict of interest

The authors have no relevant conflict of interest to disclose.

Ethical approval

The manuscript does not contain information about medical device(s)/drug(s). We have abided by all institution ethical requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, D.E., Woodhouse, C., Kerolus, M.G. et al. Lumbar plexus safe working zones with lateral lumbar interbody fusion: a systematic review and meta-analysis. Eur Spine J 31, 2527–2535 (2022). https://doi.org/10.1007/s00586-022-07352-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07352-2

Keywords

Navigation