Mercer W (1936) Spondylolisthesis: with a description of a new method of operative treatment and notes of ten cases. Edinb Med J 43:545–572
PubMed
PubMed Central
Google Scholar
Bagby G (1999) The Bagby and Kuslich (BAK) method of lumbar interbody fusion. Spine (Phila Pa 1976) 24:1857. https://doi.org/10.1097/00007632-199909010-00019
CAS
Article
Google Scholar
Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine 23:1267–1279
CAS
Article
Google Scholar
Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Mech Test Spine 16:S277-282
CAS
Article
Google Scholar
Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:2106–2107
CAS
Article
Google Scholar
Brantigan JW, Neidre A, Toohey JS (2004) The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a food and drug administration clinical trial. Spine J 4:681–688. https://doi.org/10.1016/j.spinee.2004.05.253
Article
PubMed
Google Scholar
Graf-Hausner U, Imwinkelried T, Horst M, Sievers M, Muller U (2006) Do human osteoblasts grow into open-porous titanium? Eur Cells Mater 11:8–15. https://doi.org/10.22203/eCM.v011a02
Article
Google Scholar
Olivares-Navarrete R, Hyzy SL, Gittens RA, Schneider JM, Haithcock DA, Ullrich PF, Slosar PJ, Schwartz Z, Boyan BD (2013) Rough titanium alloys regulate osteoblast production of angiogenic factors. The Spine J Off J North Am Spine Soc 13:1563–1570. https://doi.org/10.1016/j.spinee.2013.03.047
Article
Google Scholar
Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapiro I, Freeman T (2012) Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J Orthop Res 30:1626–1633. https://doi.org/10.1002/jor.22116
CAS
Article
PubMed
Google Scholar
Zhu Y, Li F, Li S, Hao Y, Yang R (2009) Effect of elastic modulus on biomechanical properties of lumbar interbody fusion cage. J Mater Sci Technol 25:325–328
Article
Google Scholar
Niinomi M, Liu Y, Nakai M, Liu H, Li H (2016) Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater 3:173–185. https://doi.org/10.1093/rb/rbw016
CAS
Article
PubMed
PubMed Central
Google Scholar
Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532. https://doi.org/10.1097/00002517-200112000-00012
CAS
Article
PubMed
Google Scholar
Zdeblick TA, Phillips FM (2003) Interbody cage devices. Spine 28:S2-7
PubMed
Google Scholar
Kandziora F, Schollmeier G, Scholz M, Schaefer J, Scholz A, Schmidmaier G, Schroder R, Bail H, Duda G, Mittlmeier T, Haas NP (2002) Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg 96:321–332
PubMed
Google Scholar
Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF, Schwartz Z, Boyan BD (2012) Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J Off J North Am Spine Soc 12:265–272. https://doi.org/10.1016/j.spinee.2012.02.002
Article
Google Scholar
Olivares-Navarrete R, Hyzy SL, Slosar PJ, Schneider JM, Schwartz Z, Boyan BD (2015) Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine (Phila Pa 1976) 40:399–404. https://doi.org/10.1097/BRS.0000000000000778
Article
Google Scholar
Li L, Shi J, Zhang K, Yang L, Yu F, Zhu L, Liang H, Wang X, Jiang Q (2019) Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Translat 19:94–105. https://doi.org/10.1016/j.jot.2019.03.003
Article
PubMed
PubMed Central
Google Scholar
Guyer RD, Abitbol J-J, Ohnmeiss DD, Yao C (2016) Evaluating osseointegration into a deeply porous titanium scaffold: a biomechanical comparison with PEEK and allograft. Spine 41:E1146–E1150. https://doi.org/10.1097/BRS.0000000000001672
Article
PubMed
Google Scholar
Loenen ACY, Peters MJM, Bevers RTJ, Schaffrath C, van Haver E, Cuijpers VMJI, Rademakers T, van Rietbergen B, Willems PC, Arts JJ (2021) Early bone ingrowth and segmental stability of a trussed titanium cage versus a polyether ether ketone cage in an ovine lumbar interbody fusion model. Spine J Off J N Am Spine Soc. https://doi.org/10.1016/j.spinee.2021.07.011
Article
Google Scholar
Lin C-Y, Wirtz T, LaMarca F, Hollister SJ (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res, Part A 83:272–279
Article
Google Scholar
Hoppe S, Albers CE, Elfiky T, Deml MC, Milavec H, Bigdon SF, Benneker LM (2018) First results of a new vacuum plasma sprayed (VPS) titanium-coated carbon/PEEK composite cage for lumbar interbody fusion. J Funct Biomater. https://doi.org/10.3390/jfb9010023
Article
PubMed
PubMed Central
Google Scholar
Li P, Jiang W, Yan J, Hu K, Han Z, Wang B, Zhao Y, Cui G, Wang Z, Mao K, Wang Y, Cui F (2019) A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res, Part A 107:1386–1392. https://doi.org/10.1002/jbm.a.36652
CAS
Article
Google Scholar
Van Horn MR, Beard R, Wang W, Cunningham BW, Mullinix KP, Allall M, Bucklen BS (2021) Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Spine J Off J N Am Spine Soc 21:2097–2103. https://doi.org/10.1016/j.spinee.2021.05.018
Article
Google Scholar
Krafft PR, Osburn B, Vivas AC, Rao G, Alikhani P (2020) Novel titanium cages for minimally invasive lateral lumbar interbody fusion: first assessment of subsidence. Spine surgery and related research; 4:171–177. https://doi.org/10.22603/ssrr.2019-0089
McGilvray KC, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, Mroz TE, Puttlitz CM (2018) Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J Off J North Am Spine Soc 18:1250–1260. https://doi.org/10.1016/j.spinee.2018.02.018
Article
Google Scholar
Novotna Z, Rimpelova S, Jurik P, Vesely M, Kolska Z, Hubacek T, Borovec J, Svorcik V (2017) Tuning surface chemistry of polyetheretherketone by gold coating and plasma treatment. Nanoscale Res Lett 12:424. https://doi.org/10.1186/s11671-017-2182-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res 62:488–498. https://doi.org/10.1002/jbm.10159
CAS
Article
PubMed
Google Scholar
Enders JJ, Coughlin D, Mroz TE, Vira S (2020) Surface technologies in spinal fusion. Neurosurg Clin N Am 31:57–64. https://doi.org/10.1016/j.nec.2019.08.007
Article
PubMed
Google Scholar
Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-a finite element study. Spine 31:E992-998
Article
Google Scholar
Heary RF, Parvathreddy N, Sampath S, Agarwal N (2017) Elastic modulus in the selection of interbody implants. J Spine Surg 3:163–167. https://doi.org/10.21037/jss.2017.05.01
Article
PubMed
PubMed Central
Google Scholar
Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, Ohl A, Rueger JM (2005) Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med 16:671–677. https://doi.org/10.1007/s10856-005-2539-z
CAS
Article
PubMed
Google Scholar
Torstrick FB, Lin ASP, Safranski DL, Potter D, Sulchek T, Lee CSD, Gall K, Guldberg RE (2020) Effects of surface topography and chemistry on polyether-ether-ketone (PEEK) and titanium osseointegration. Spine 45:E417–E424. https://doi.org/10.1097/BRS.0000000000003303
Article
PubMed
Google Scholar
Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123. https://doi.org/10.1016/S0142-9612(03)00131-5
CAS
Article
PubMed
Google Scholar
Wu X, Liu X, Wei J, Ma J, Deng F, Wei S (2012) Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomedicine 7:1215–1225. https://doi.org/10.2147/IJN.S28101
CAS
Article
PubMed
PubMed Central
Google Scholar
Almasi D, Iqbal N, Sadeghi M, Sudin I, Abdul Kadir MR, Kamarul T (2016) Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review. Int J Biomater 2016:8202653. https://doi.org/10.1155/2016/8202653
CAS
Article
PubMed
PubMed Central
Google Scholar
Noiset O, Henneuse C, Schneider Y-J, Marchand-Brynaert J (1997) Surface reduction of poly(aryl ether ether ketone) film: uv spectrophotometric, 3H radiochemical, and X-ray photoelectron spectroscopic assays of the hydroxyl functions. Macromolecules 30:540–548. https://doi.org/10.1021/ma960368+
CAS
Article
Google Scholar
Ha SW, Kirch M, Birchler F, Eckert KL, Mayer J, Wintermantel E, Sittig C, Pfund-Klingenfuss I, Textor M, Spencer ND, Guecheva M, Vonmont H (1997) Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. J Mater Sci Mater Med 8:683–690. https://doi.org/10.1023/a:1018535923173
CAS
Article
PubMed
Google Scholar
Laurens P, Sadras B, Decobert F, Arefi-Khonsari F, Amouroux J (1999) Laser-induced surface modifications of poly(ether ether ketone): influence of the excimer laser wavelength. J Adhes Sci Technol 13:983–997. https://doi.org/10.1163/156856199X00460
CAS
Article
Google Scholar
Khoury J, Kirkpatrick SR, Maxwell M, Cherian RE, Kirkpatrick A, Svrluga RC (2013) Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instrum Methods Phys Res, Sect B 307:630–634
CAS
Article
Google Scholar
Mathieson I, Bradley RH (1996) Improved adhesion to polymers by UV/ozone surface oxidation. Int J Adhes Adhes 16:29–31. https://doi.org/10.1016/0143-7496(96)88482-X
CAS
Article
Google Scholar
Garg H, Bedi G, Garg A (2012) Implant surface modifications: a review. J Clin Diagn Res 6:319–324
Google Scholar
Chi M-H, Tsou H-K, Chung C-J, He J-L (2013) Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance. Thin Solid Films 549:98–102. https://doi.org/10.1016/j.tsf.2013.06.063
CAS
Article
Google Scholar
Ha SW, Mayer J, Koch B, Wintermantel E (1994) Plasma-sprayed hydroxylapatite coating on carbon fibre reinforced thermoplastic composite materials. J Mater Sci—Mater Med 5:481–484. https://doi.org/10.1007/BF00058987
CAS
Article
Google Scholar
Han CM, Jang TS, Kim HE, Koh YH (2014) Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein. J Biomed Mater Res A 102:793–800. https://doi.org/10.1002/jbm.a.34748
CAS
Article
PubMed
Google Scholar
Lim KM, Park TH, Lee SJ, Park SJ (2019) Design and biomechanical verification of additive manufactured composite spinal cage composed of porous titanium cover and PEEK body. Appl Sci. https://doi.org/10.3390/app9204258
Article
Google Scholar
Tsai P-I, Wu M-H, Li Y-Y, Lin T-H, Tsai JSC, Huang H-I, Lai H-J, Lee M-H, Chen C-Y (2021) Additive-manufactured Ti-6Al-4 V/Polyetheretherketone composite porous cage for Interbody fusion: bone growth and biocompatibility evaluation in a porcine model. BMC Musculoskelet Disord 22:171. https://doi.org/10.1186/s12891-021-04022-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Kienle A, Krieger A, Willems K, Wilke HJ (2019) Resistance of coated polyetheretherketone lumbar interbody fusion cages against abrasion under simulated impaction into the disc space. J Appl Biomater Funct Mater 17:2280800018782854. https://doi.org/10.1177/2280800018782854
CAS
Article
PubMed
Google Scholar
Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE (2016) Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res 474:2373–2383
Article
Google Scholar
Torstrick FB, Klosterhoff BS, Westerlund LE, Foley KT, Gochuico J, Lee CSD, Gall K, Safranski DL (2018) Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices. Spine J 18:857–865. https://doi.org/10.1016/j.spinee.2018.01.003
Article
PubMed
Google Scholar
Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci Off J Neurosurg Soc Australas 44:23–29. https://doi.org/10.1016/j.jocn.2017.06.062
CAS
Article
Google Scholar
Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, Chen D (2013) Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22:1539–1546. https://doi.org/10.1007/s00586-013-2772-y
Article
Google Scholar
Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:172. https://doi.org/10.1186/1471-2474-13-172
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Z-J, Wang Y, Xu G-J, Tian P (2016) Is PEEK cage better than titanium cage in anterior cervical discectomy and fusion surgery? A meta-analysis. BMC Musculoskelet Disord 17:379. https://doi.org/10.1186/s12891-016-1234-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Krause KL, Obayashi JT, Bridges KJ, Raslan AM, Than KD (2019) Fivefold higher rate of pseudarthrosis with polyetheretherketone interbody device than with structural allograft used for 1-level anterior cervical discectomy and fusion. J Neurosurg Spine 30:46–51. https://doi.org/10.3171/2018.7.SPINE18531
Article
Google Scholar
Teton ZE, Cheaney B, Obayashi JT, Than KD (2020) PEEK interbody devices for multilevel anterior cervical discectomy and fusion: association with more than 6-fold higher rates of pseudarthrosis compared to structural allograft. J Neurosurg Spine. https://doi.org/10.3171/2019.11.SPINE19788
Article
PubMed
Google Scholar
Cutler AR, Siddiqui S, Mohan AL, Hillard VH, Cerabona F, Das K (2006) Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion. J Neurosurg Spine 5:534–539
Article
Google Scholar
Campbell PG, Cavanaugh DA, Nunley P, Utter PA, Kerr E, Wadhwa R, Stone M (2020) PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence. Neurosurg Focus 49:E10. https://doi.org/10.3171/2020.6.FOCUS20367
Article
PubMed
Google Scholar
Chong E, Mobbs RJ, Pelletier MH, Walsh WR (2016) Titanium/polyetheretherketone cages for cervical arthrodesis with degenerative and traumatic pathologies: early clinical outcomes and fusion rates. Orthop Surg 8:19–26. https://doi.org/10.1111/os.12221
Article
PubMed
PubMed Central
Google Scholar
Mobbs RJ, Phan K, Assem Y, Pelletier M, Walsh WR (2016) Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results. J Clin Neurosci 34:94–99. https://doi.org/10.1016/j.jocn.2016.05.028
CAS
Article
PubMed
Google Scholar
Kotsias A, Mularski S, Kuhn B, Hanna M, Suess O (2017) Does partial coating with titanium improve the radiographic fusion rate of empty PEEK cages in cervical spine surgery? A comparative analysis of clinical data. Patient Saf Surg 11:13. https://doi.org/10.1186/s13037-017-0127-z
Article
PubMed
PubMed Central
Google Scholar
Rickert M, Fleege C, Tarhan T, Schreiner S, Makowski MR, Rauschmann M, Arabmotlagh M (2017) Transforaminal lumbar interbody fusion using polyetheretherketone oblique cages with and without a titanium coating: a randomised clinical pilot study. The Bone Joint J 99-B:1366–1372. https://doi.org/10.1302/0301-620X.99B10.BJJ-2016-1292.R2
Kashii M, Kitaguchi K, Makino T, Kaito T (2020) Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci Off J Jpn Orthop Assoc 25:565–570. https://doi.org/10.1016/j.jos.2019.07.004
Article
Google Scholar
Schnake KJ, Fleiter N, Hoffmann C, Pingel A, Scholz M, Langheinrich A, Kandziora F (2021) PLIF surgery with titanium-coated PEEK or uncoated PEEK cages: a prospective randomised clinical and radiological study. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 30:114–121. https://doi.org/10.1007/s00586-020-06642-x
Article
Google Scholar
Yao Y-C, Chou P-H, Lin H-H, Wang S-T, Chang M-C (2021) Outcome of Ti/PEEK versus PEEK cages in minimally invasive transforaminal lumbar interbody fusion. Global Spine J. https://doi.org/10.1177/21925682211000323
Article
PubMed
Google Scholar
Hasegawa T, Ushirozako H, Shigeto E, Ohba T, Oba H, Mukaiyama K, Shimizu S, Yamato Y, Ide K, Shibata Y, Ojima T, Takahashi J, Haro H, Matsuyama Y (2020) The titanium-coated PEEK cage maintains better bone fusion with the endplate than the PEEK cage 6 months after PLIF surgery: a multicenter, prospective, randomized study. Spine 45:E892–E902. https://doi.org/10.1097/BRS.0000000000003464
Article
PubMed
Google Scholar
Manabe H, Sakai T, Morimoto M, Tezuka F, Yamashita K, Takata Y, Sairyo K (2019) Radiological outcomes of posterior lumbar interbody fusion using a titanium-coated PEEK cage. J Med Invest 66:119–122. https://doi.org/10.2152/jmi.66.119
Article
PubMed
Google Scholar
Massaad E, Fatima N, Kiapour A, Hadzipasic M, Shankar GM, Shin JH (2020) Polyetheretherketone versus titanium cages for posterior lumbar interbody fusion: meta-analysis and review of the literature. Neurospine 17:125–135. https://doi.org/10.14245/ns.2040058.029
Sclafani J et al (2017) Arthrodesis rate and patient reported outcomes after anterior lumbar interbody fusion utilizing a plasma-sprayed titanium coated PEEK interbody implant: a retrospective, observational analysis. Int J Spine Surg 11:17
Article
Google Scholar
Arregui R, Aso J, Martinez Quinones J-V, Sebastian C, Consolini F, Aso Vizan A (2020) Follow-up of a new titaniumcoated polyetheretherketone cage for the cervical spine. Orthop Rev 12:8359. https://doi.org/10.4081/or.2020.8359
Article
Google Scholar
Zhu C, He M, Mao L, Li T, Zhang L, Liu L, Feng G, Song Y (2021) Titanium-interlayer mediated hydroxyapatite coating on polyetheretherketone: a prospective study in patients with single-level cervical degenerative disc disease. J Transl Med 19:14. https://doi.org/10.1186/s12967-020-02688-z
CAS
Article
PubMed
PubMed Central
Google Scholar