Skip to main content

Evolution of polyetheretherketone (PEEK) and titanium interbody devices for spinal procedures: a comprehensive review of the literature

Abstract

Introduction

Interbody fusion is commonly utilized for arthrodesis and stability among patients undergoing spine surgery. Over the last few decades, interbody device materials, such as titanium and polyetheretherketone (PEEK), have been replacing traditional autografts and allografts for interbody fusion. As such, with the exponential growth of bioengineering, a large variety cage surface technologies exist. Different combinations of cage component materials and surface modifications have been created to optimize interbody constructs for surgical use. This review aims to provide a comprehensive overview of common surface technologies, their performance in the clinical setting, and recent modifications and material combinations.

Materials and Methods

We performed a comprehensive review of the literature on titanium and PEEK as medical devices between 1964 and 2021. We searched five major databases, resulting in 4974 records. Articles were screened for inclusion manually by two independent reviewers, resulting in 237 articles included for review.

Conclusion

Interbody devices have rapidly evolved over the last few decades. Biomaterial and biomechanical modifications have allowed for continued design optimization. While titanium has a high osseointegrative capacity, it also has a high elastic modulus and is radio-opaque. PEEK, on the other hand, has a lower elastic modulus and is radiolucent, though PEEK has poor osseointegrative capacity. Surface modifications, material development advancements, and hybrid material devices have been utilized in search of an optimal spinal implant which maximizes the advantages and minimizes the disadvantages of each interbody material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Adapted from: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71)

References

  1. Mercer W (1936) Spondylolisthesis: with a description of a new method of operative treatment and notes of ten cases. Edinb Med J 43:545–572

    PubMed  PubMed Central  Google Scholar 

  2. Bagby G (1999) The Bagby and Kuslich (BAK) method of lumbar interbody fusion. Spine (Phila Pa 1976) 24:1857. https://doi.org/10.1097/00007632-199909010-00019

    CAS  Article  Google Scholar 

  3. Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine 23:1267–1279

    CAS  Article  Google Scholar 

  4. Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Mech Test Spine 16:S277-282

    CAS  Article  Google Scholar 

  5. Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:2106–2107

    CAS  Article  Google Scholar 

  6. Brantigan JW, Neidre A, Toohey JS (2004) The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a food and drug administration clinical trial. Spine J 4:681–688. https://doi.org/10.1016/j.spinee.2004.05.253

    Article  PubMed  Google Scholar 

  7. Graf-Hausner U, Imwinkelried T, Horst M, Sievers M, Muller U (2006) Do human osteoblasts grow into open-porous titanium? Eur Cells Mater 11:8–15. https://doi.org/10.22203/eCM.v011a02

    Article  Google Scholar 

  8. Olivares-Navarrete R, Hyzy SL, Gittens RA, Schneider JM, Haithcock DA, Ullrich PF, Slosar PJ, Schwartz Z, Boyan BD (2013) Rough titanium alloys regulate osteoblast production of angiogenic factors. The Spine J Off J North Am Spine Soc 13:1563–1570. https://doi.org/10.1016/j.spinee.2013.03.047

    Article  Google Scholar 

  9. Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapiro I, Freeman T (2012) Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J Orthop Res 30:1626–1633. https://doi.org/10.1002/jor.22116

    CAS  Article  PubMed  Google Scholar 

  10. Zhu Y, Li F, Li S, Hao Y, Yang R (2009) Effect of elastic modulus on biomechanical properties of lumbar interbody fusion cage. J Mater Sci Technol 25:325–328

    Article  Google Scholar 

  11. Niinomi M, Liu Y, Nakai M, Liu H, Li H (2016) Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater 3:173–185. https://doi.org/10.1093/rb/rbw016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532. https://doi.org/10.1097/00002517-200112000-00012

    CAS  Article  PubMed  Google Scholar 

  13. Zdeblick TA, Phillips FM (2003) Interbody cage devices. Spine 28:S2-7

    PubMed  Google Scholar 

  14. Kandziora F, Schollmeier G, Scholz M, Schaefer J, Scholz A, Schmidmaier G, Schroder R, Bail H, Duda G, Mittlmeier T, Haas NP (2002) Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg 96:321–332

    PubMed  Google Scholar 

  15. Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF, Schwartz Z, Boyan BD (2012) Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J Off J North Am Spine Soc 12:265–272. https://doi.org/10.1016/j.spinee.2012.02.002

    Article  Google Scholar 

  16. Olivares-Navarrete R, Hyzy SL, Slosar PJ, Schneider JM, Schwartz Z, Boyan BD (2015) Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine (Phila Pa 1976) 40:399–404. https://doi.org/10.1097/BRS.0000000000000778

    Article  Google Scholar 

  17. Li L, Shi J, Zhang K, Yang L, Yu F, Zhu L, Liang H, Wang X, Jiang Q (2019) Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Translat 19:94–105. https://doi.org/10.1016/j.jot.2019.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guyer RD, Abitbol J-J, Ohnmeiss DD, Yao C (2016) Evaluating osseointegration into a deeply porous titanium scaffold: a biomechanical comparison with PEEK and allograft. Spine 41:E1146–E1150. https://doi.org/10.1097/BRS.0000000000001672

    Article  PubMed  Google Scholar 

  19. Loenen ACY, Peters MJM, Bevers RTJ, Schaffrath C, van Haver E, Cuijpers VMJI, Rademakers T, van Rietbergen B, Willems PC, Arts JJ (2021) Early bone ingrowth and segmental stability of a trussed titanium cage versus a polyether ether ketone cage in an ovine lumbar interbody fusion model. Spine J Off J N Am Spine Soc. https://doi.org/10.1016/j.spinee.2021.07.011

    Article  Google Scholar 

  20. Lin C-Y, Wirtz T, LaMarca F, Hollister SJ (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res, Part A 83:272–279

    Article  Google Scholar 

  21. Hoppe S, Albers CE, Elfiky T, Deml MC, Milavec H, Bigdon SF, Benneker LM (2018) First results of a new vacuum plasma sprayed (VPS) titanium-coated carbon/PEEK composite cage for lumbar interbody fusion. J Funct Biomater. https://doi.org/10.3390/jfb9010023

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li P, Jiang W, Yan J, Hu K, Han Z, Wang B, Zhao Y, Cui G, Wang Z, Mao K, Wang Y, Cui F (2019) A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res, Part A 107:1386–1392. https://doi.org/10.1002/jbm.a.36652

    CAS  Article  Google Scholar 

  23. Van Horn MR, Beard R, Wang W, Cunningham BW, Mullinix KP, Allall M, Bucklen BS (2021) Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Spine J Off J N Am Spine Soc 21:2097–2103. https://doi.org/10.1016/j.spinee.2021.05.018

    Article  Google Scholar 

  24. Krafft PR, Osburn B, Vivas AC, Rao G, Alikhani P (2020) Novel titanium cages for minimally invasive lateral lumbar interbody fusion: first assessment of subsidence. Spine surgery and related research; 4:171–177. https://doi.org/10.22603/ssrr.2019-0089

  25. McGilvray KC, Easley J, Seim HB, Regan D, Berven SH, Hsu WK, Mroz TE, Puttlitz CM (2018) Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J Off J North Am Spine Soc 18:1250–1260. https://doi.org/10.1016/j.spinee.2018.02.018

    Article  Google Scholar 

  26. Novotna Z, Rimpelova S, Jurik P, Vesely M, Kolska Z, Hubacek T, Borovec J, Svorcik V (2017) Tuning surface chemistry of polyetheretherketone by gold coating and plasma treatment. Nanoscale Res Lett 12:424. https://doi.org/10.1186/s11671-017-2182-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res 62:488–498. https://doi.org/10.1002/jbm.10159

    CAS  Article  PubMed  Google Scholar 

  28. Enders JJ, Coughlin D, Mroz TE, Vira S (2020) Surface technologies in spinal fusion. Neurosurg Clin N Am 31:57–64. https://doi.org/10.1016/j.nec.2019.08.007

    Article  PubMed  Google Scholar 

  29. Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-a finite element study. Spine 31:E992-998

    Article  Google Scholar 

  30. Heary RF, Parvathreddy N, Sampath S, Agarwal N (2017) Elastic modulus in the selection of interbody implants. J Spine Surg 3:163–167. https://doi.org/10.21037/jss.2017.05.01

    Article  PubMed  PubMed Central  Google Scholar 

  31. Briem D, Strametz S, Schroder K, Meenen NM, Lehmann W, Linhart W, Ohl A, Rueger JM (2005) Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J Mater Sci Mater Med 16:671–677. https://doi.org/10.1007/s10856-005-2539-z

    CAS  Article  PubMed  Google Scholar 

  32. Torstrick FB, Lin ASP, Safranski DL, Potter D, Sulchek T, Lee CSD, Gall K, Guldberg RE (2020) Effects of surface topography and chemistry on polyether-ether-ketone (PEEK) and titanium osseointegration. Spine 45:E417–E424. https://doi.org/10.1097/BRS.0000000000003303

    Article  PubMed  Google Scholar 

  33. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123. https://doi.org/10.1016/S0142-9612(03)00131-5

    CAS  Article  PubMed  Google Scholar 

  34. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S (2012) Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomedicine 7:1215–1225. https://doi.org/10.2147/IJN.S28101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Almasi D, Iqbal N, Sadeghi M, Sudin I, Abdul Kadir MR, Kamarul T (2016) Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review. Int J Biomater 2016:8202653. https://doi.org/10.1155/2016/8202653

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Noiset O, Henneuse C, Schneider Y-J, Marchand-Brynaert J (1997) Surface reduction of poly(aryl ether ether ketone) film: uv spectrophotometric, 3H radiochemical, and X-ray photoelectron spectroscopic assays of the hydroxyl functions. Macromolecules 30:540–548. https://doi.org/10.1021/ma960368+

    CAS  Article  Google Scholar 

  37. Ha SW, Kirch M, Birchler F, Eckert KL, Mayer J, Wintermantel E, Sittig C, Pfund-Klingenfuss I, Textor M, Spencer ND, Guecheva M, Vonmont H (1997) Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. J Mater Sci Mater Med 8:683–690. https://doi.org/10.1023/a:1018535923173

    CAS  Article  PubMed  Google Scholar 

  38. Laurens P, Sadras B, Decobert F, Arefi-Khonsari F, Amouroux J (1999) Laser-induced surface modifications of poly(ether ether ketone): influence of the excimer laser wavelength. J Adhes Sci Technol 13:983–997. https://doi.org/10.1163/156856199X00460

    CAS  Article  Google Scholar 

  39. Khoury J, Kirkpatrick SR, Maxwell M, Cherian RE, Kirkpatrick A, Svrluga RC (2013) Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instrum Methods Phys Res, Sect B 307:630–634

    CAS  Article  Google Scholar 

  40. Mathieson I, Bradley RH (1996) Improved adhesion to polymers by UV/ozone surface oxidation. Int J Adhes Adhes 16:29–31. https://doi.org/10.1016/0143-7496(96)88482-X

    CAS  Article  Google Scholar 

  41. Garg H, Bedi G, Garg A (2012) Implant surface modifications: a review. J Clin Diagn Res 6:319–324

    Google Scholar 

  42. Chi M-H, Tsou H-K, Chung C-J, He J-L (2013) Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance. Thin Solid Films 549:98–102. https://doi.org/10.1016/j.tsf.2013.06.063

    CAS  Article  Google Scholar 

  43. Ha SW, Mayer J, Koch B, Wintermantel E (1994) Plasma-sprayed hydroxylapatite coating on carbon fibre reinforced thermoplastic composite materials. J Mater Sci—Mater Med 5:481–484. https://doi.org/10.1007/BF00058987

    CAS  Article  Google Scholar 

  44. Han CM, Jang TS, Kim HE, Koh YH (2014) Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein. J Biomed Mater Res A 102:793–800. https://doi.org/10.1002/jbm.a.34748

    CAS  Article  PubMed  Google Scholar 

  45. Lim KM, Park TH, Lee SJ, Park SJ (2019) Design and biomechanical verification of additive manufactured composite spinal cage composed of porous titanium cover and PEEK body. Appl Sci. https://doi.org/10.3390/app9204258

    Article  Google Scholar 

  46. Tsai P-I, Wu M-H, Li Y-Y, Lin T-H, Tsai JSC, Huang H-I, Lai H-J, Lee M-H, Chen C-Y (2021) Additive-manufactured Ti-6Al-4 V/Polyetheretherketone composite porous cage for Interbody fusion: bone growth and biocompatibility evaluation in a porcine model. BMC Musculoskelet Disord 22:171. https://doi.org/10.1186/s12891-021-04022-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Kienle A, Krieger A, Willems K, Wilke HJ (2019) Resistance of coated polyetheretherketone lumbar interbody fusion cages against abrasion under simulated impaction into the disc space. J Appl Biomater Funct Mater 17:2280800018782854. https://doi.org/10.1177/2280800018782854

    CAS  Article  PubMed  Google Scholar 

  48. Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE (2016) Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res 474:2373–2383

    Article  Google Scholar 

  49. Torstrick FB, Klosterhoff BS, Westerlund LE, Foley KT, Gochuico J, Lee CSD, Gall K, Safranski DL (2018) Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices. Spine J 18:857–865. https://doi.org/10.1016/j.spinee.2018.01.003

    Article  PubMed  Google Scholar 

  50. Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW (2017) Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci Off J Neurosurg Soc Australas 44:23–29. https://doi.org/10.1016/j.jocn.2017.06.062

    CAS  Article  Google Scholar 

  51. Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, Chen D (2013) Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22:1539–1546. https://doi.org/10.1007/s00586-013-2772-y

    Article  Google Scholar 

  52. Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:172. https://doi.org/10.1186/1471-2474-13-172

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Li Z-J, Wang Y, Xu G-J, Tian P (2016) Is PEEK cage better than titanium cage in anterior cervical discectomy and fusion surgery? A meta-analysis. BMC Musculoskelet Disord 17:379. https://doi.org/10.1186/s12891-016-1234-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Krause KL, Obayashi JT, Bridges KJ, Raslan AM, Than KD (2019) Fivefold higher rate of pseudarthrosis with polyetheretherketone interbody device than with structural allograft used for 1-level anterior cervical discectomy and fusion. J Neurosurg Spine 30:46–51. https://doi.org/10.3171/2018.7.SPINE18531

    Article  Google Scholar 

  55. Teton ZE, Cheaney B, Obayashi JT, Than KD (2020) PEEK interbody devices for multilevel anterior cervical discectomy and fusion: association with more than 6-fold higher rates of pseudarthrosis compared to structural allograft. J Neurosurg Spine. https://doi.org/10.3171/2019.11.SPINE19788

    Article  PubMed  Google Scholar 

  56. Cutler AR, Siddiqui S, Mohan AL, Hillard VH, Cerabona F, Das K (2006) Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion. J Neurosurg Spine 5:534–539

    Article  Google Scholar 

  57. Campbell PG, Cavanaugh DA, Nunley P, Utter PA, Kerr E, Wadhwa R, Stone M (2020) PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence. Neurosurg Focus 49:E10. https://doi.org/10.3171/2020.6.FOCUS20367

    Article  PubMed  Google Scholar 

  58. Chong E, Mobbs RJ, Pelletier MH, Walsh WR (2016) Titanium/polyetheretherketone cages for cervical arthrodesis with degenerative and traumatic pathologies: early clinical outcomes and fusion rates. Orthop Surg 8:19–26. https://doi.org/10.1111/os.12221

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mobbs RJ, Phan K, Assem Y, Pelletier M, Walsh WR (2016) Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results. J Clin Neurosci 34:94–99. https://doi.org/10.1016/j.jocn.2016.05.028

    CAS  Article  PubMed  Google Scholar 

  60. Kotsias A, Mularski S, Kuhn B, Hanna M, Suess O (2017) Does partial coating with titanium improve the radiographic fusion rate of empty PEEK cages in cervical spine surgery? A comparative analysis of clinical data. Patient Saf Surg 11:13. https://doi.org/10.1186/s13037-017-0127-z

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rickert M, Fleege C, Tarhan T, Schreiner S, Makowski MR, Rauschmann M, Arabmotlagh M (2017) Transforaminal lumbar interbody fusion using polyetheretherketone oblique cages with and without a titanium coating: a randomised clinical pilot study. The Bone Joint J 99-B:1366–1372. https://doi.org/10.1302/0301-620X.99B10.BJJ-2016-1292.R2

  62. Kashii M, Kitaguchi K, Makino T, Kaito T (2020) Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci Off J Jpn Orthop Assoc 25:565–570. https://doi.org/10.1016/j.jos.2019.07.004

    Article  Google Scholar 

  63. Schnake KJ, Fleiter N, Hoffmann C, Pingel A, Scholz M, Langheinrich A, Kandziora F (2021) PLIF surgery with titanium-coated PEEK or uncoated PEEK cages: a prospective randomised clinical and radiological study. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 30:114–121. https://doi.org/10.1007/s00586-020-06642-x

    Article  Google Scholar 

  64. Yao Y-C, Chou P-H, Lin H-H, Wang S-T, Chang M-C (2021) Outcome of Ti/PEEK versus PEEK cages in minimally invasive transforaminal lumbar interbody fusion. Global Spine J. https://doi.org/10.1177/21925682211000323

    Article  PubMed  Google Scholar 

  65. Hasegawa T, Ushirozako H, Shigeto E, Ohba T, Oba H, Mukaiyama K, Shimizu S, Yamato Y, Ide K, Shibata Y, Ojima T, Takahashi J, Haro H, Matsuyama Y (2020) The titanium-coated PEEK cage maintains better bone fusion with the endplate than the PEEK cage 6 months after PLIF surgery: a multicenter, prospective, randomized study. Spine 45:E892–E902. https://doi.org/10.1097/BRS.0000000000003464

    Article  PubMed  Google Scholar 

  66. Manabe H, Sakai T, Morimoto M, Tezuka F, Yamashita K, Takata Y, Sairyo K (2019) Radiological outcomes of posterior lumbar interbody fusion using a titanium-coated PEEK cage. J Med Invest 66:119–122. https://doi.org/10.2152/jmi.66.119

    Article  PubMed  Google Scholar 

  67. Massaad E, Fatima N, Kiapour A, Hadzipasic M, Shankar GM, Shin JH (2020) Polyetheretherketone versus titanium cages for posterior lumbar interbody fusion: meta-analysis and review of the literature. Neurospine 17:125–135. https://doi.org/10.14245/ns.2040058.029

  68. Sclafani J et al (2017) Arthrodesis rate and patient reported outcomes after anterior lumbar interbody fusion utilizing a plasma-sprayed titanium coated PEEK interbody implant: a retrospective, observational analysis. Int J Spine Surg 11:17

    Article  Google Scholar 

  69. Arregui R, Aso J, Martinez Quinones J-V, Sebastian C, Consolini F, Aso Vizan A (2020) Follow-up of a new titaniumcoated polyetheretherketone cage for the cervical spine. Orthop Rev 12:8359. https://doi.org/10.4081/or.2020.8359

    Article  Google Scholar 

  70. Zhu C, He M, Mao L, Li T, Zhang L, Liu L, Feng G, Song Y (2021) Titanium-interlayer mediated hydroxyapatite coating on polyetheretherketone: a prospective study in patients with single-level cervical degenerative disc disease. J Transl Med 19:14. https://doi.org/10.1186/s12967-020-02688-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alp Ozpinar.

Ethics declarations

Conflicts of interest

Nitin Agarwal, MD discloses royalties from Thieme Medical Publishers and serves as a consultant for Springer International Publishing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muthiah, N., Yolcu, Y.U., Alan, N. et al. Evolution of polyetheretherketone (PEEK) and titanium interbody devices for spinal procedures: a comprehensive review of the literature. Eur Spine J (2022). https://doi.org/10.1007/s00586-022-07272-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-022-07272-1

Keywords

  • Cervical
  • Lumbar
  • 3D printing
  • Porous
  • Technology